书籍详情
点云数据语义分割的理论与方法
作者:张蕊,李广云 著
出版社:科学出版社
出版时间:2022-11-01
ISBN:9787030734884
定价:¥98.00
购买这本书可以去
内容简介
随着三维激光扫描传感设备硬件的快速发展,可保留三维空间中原始语义信息(几何信息、颜色、反射强度等)的点云已成为代表性的新型数据源之一。语义分割作为三维场景语义分析与解译的重要前提,在无人驾驶、高精地图、智慧城市等国家重大需求的推动下,已成为测绘遥感、计算机视觉等领域的重大研究课题。《点云数据语义分割的理论与方法》以语义分割的理论与方法为研究内容,以点云为研究对象,从点云类型、深度学习基础知识、点云的组织与管理、融合点云与图像的语义分割以及直接基于点云的语义分割等方面进行介绍,是一部多学科交叉、融合的点云语义分割著作。
作者简介
暂缺《点云数据语义分割的理论与方法》作者简介
目录
目录
《导航与时频技术丛书》序
前言
第1章绪论1
参考文献3
第2章点云类型及语义分割方法概述4
2.1引言4
2.2点云类型4
2.2.1激光点云4
2.2.2影像点云13
2.2.3RGB-D点云13
2.2.4结构光点云15
2.2.5其他类型点云15
2.3点云语义分割方法概述18
2.3.1统计分析法18
2.3.2投影图像法21
2.3.3其他传统语义分割方法22
2.3.4二维图像深度学习语义分割方法23
2.3.5三维点云深度学习语义分割方法28
参考文献33
第3章深度学习40
3.1引言40
3.2深度学习技术概述40
3.2.1人工智能、机器学习与深度学习41
3.2.2卷积运算42
3.2.3卷积神经网络工作原理43
3.2.4深度学习框架52
3.3深度学习在计算机视觉中的应用53
3.3.1图像分类53
3.3.2目标检测54
3.3.3语义分割54
3.3.4实例分割55
3.3.5其他应用55
3.4深度学习与三维激光点云的结合56
3.4.1三维激光点云数据的表示形式57
3.4.2三维激光点云数据集的语义标注方法57
3.4.3三维激光点云语义分割存在的挑战58
参考文献58
第4章LiDAR点云的组织与管理61
4.1引言61
4.2两级混合索引结构的确定62
4.2.1全局KD树索引62
4.2.2局部八叉树索引64
4.3Kd-OcTree混合索引的构建65
4.3.1Kd-OcTree混合索引的逻辑结构66
4.3.2Kd-OcTree混合索引的数据结构66
4.3.3Kd-OcTree混合索引的构造算法70
4.4实验结果与分析72
4.4.1测试数据72
4.4.2构造索引速度测试73
4.4.3邻域搜索速度测试74
4.4.4索引结构对地面点感知效果的影响75
4.4.5阈值敏感度测试77
4.4.6不同索引结构CPU、内存消耗对比分析79
参考文献80
第5章基于深度学习和二维图像的多目标语义分割82
5.1引言82
5.2基于二维图像的语义分割83
5.2.1点云描述子83
5.2.2深度卷积神经网络85
5.2.3二维图像与三维点云之间的映射关系85
5.2.4精细特征提取方法86
5.3研究方法87
5.3.1DVLSHR模型构建87
5.3.2二维图像到三维点云的映射90
5.3.3三维建筑点云的精细分割91
5.4实验结果与分析103
5.4.1数据集103
5.4.2评价标准104
5.4.3DVLSHR模型训练105
5.4.4初步分割结果112
5.4.5映射结果可视化112
5.4.6基于三维点云的建筑物精细特征分割114
5.4.7结果分析115
参考文献116
第6章三维点云语义分割120
6.1引言120
6.2研究现状121
6.2.1三维数据集121
6.2.2基于点云的三维卷积神经网络122
6.3研究方法123
6.3.1点云表示形式123
6.3.2三维深度网络结构124
6.3.3输入点集的顺序对网络性能的影响129
6.4实验结果与分析130
6.4.1实验平台131
6.4.2评价指标131
6.4.3网络体系结构验证132
6.4.4分割效果136
6.4.5结果分析137
参考文献138
第7章总结与展望140
《导航与时频技术丛书》序
前言
第1章绪论1
参考文献3
第2章点云类型及语义分割方法概述4
2.1引言4
2.2点云类型4
2.2.1激光点云4
2.2.2影像点云13
2.2.3RGB-D点云13
2.2.4结构光点云15
2.2.5其他类型点云15
2.3点云语义分割方法概述18
2.3.1统计分析法18
2.3.2投影图像法21
2.3.3其他传统语义分割方法22
2.3.4二维图像深度学习语义分割方法23
2.3.5三维点云深度学习语义分割方法28
参考文献33
第3章深度学习40
3.1引言40
3.2深度学习技术概述40
3.2.1人工智能、机器学习与深度学习41
3.2.2卷积运算42
3.2.3卷积神经网络工作原理43
3.2.4深度学习框架52
3.3深度学习在计算机视觉中的应用53
3.3.1图像分类53
3.3.2目标检测54
3.3.3语义分割54
3.3.4实例分割55
3.3.5其他应用55
3.4深度学习与三维激光点云的结合56
3.4.1三维激光点云数据的表示形式57
3.4.2三维激光点云数据集的语义标注方法57
3.4.3三维激光点云语义分割存在的挑战58
参考文献58
第4章LiDAR点云的组织与管理61
4.1引言61
4.2两级混合索引结构的确定62
4.2.1全局KD树索引62
4.2.2局部八叉树索引64
4.3Kd-OcTree混合索引的构建65
4.3.1Kd-OcTree混合索引的逻辑结构66
4.3.2Kd-OcTree混合索引的数据结构66
4.3.3Kd-OcTree混合索引的构造算法70
4.4实验结果与分析72
4.4.1测试数据72
4.4.2构造索引速度测试73
4.4.3邻域搜索速度测试74
4.4.4索引结构对地面点感知效果的影响75
4.4.5阈值敏感度测试77
4.4.6不同索引结构CPU、内存消耗对比分析79
参考文献80
第5章基于深度学习和二维图像的多目标语义分割82
5.1引言82
5.2基于二维图像的语义分割83
5.2.1点云描述子83
5.2.2深度卷积神经网络85
5.2.3二维图像与三维点云之间的映射关系85
5.2.4精细特征提取方法86
5.3研究方法87
5.3.1DVLSHR模型构建87
5.3.2二维图像到三维点云的映射90
5.3.3三维建筑点云的精细分割91
5.4实验结果与分析103
5.4.1数据集103
5.4.2评价标准104
5.4.3DVLSHR模型训练105
5.4.4初步分割结果112
5.4.5映射结果可视化112
5.4.6基于三维点云的建筑物精细特征分割114
5.4.7结果分析115
参考文献116
第6章三维点云语义分割120
6.1引言120
6.2研究现状121
6.2.1三维数据集121
6.2.2基于点云的三维卷积神经网络122
6.3研究方法123
6.3.1点云表示形式123
6.3.2三维深度网络结构124
6.3.3输入点集的顺序对网络性能的影响129
6.4实验结果与分析130
6.4.1实验平台131
6.4.2评价指标131
6.4.3网络体系结构验证132
6.4.4分割效果136
6.4.5结果分析137
参考文献138
第7章总结与展望140
猜您喜欢