书籍详情
电动力学(英文版)
作者:郭昊 编
出版社:东南大学出版社
出版时间:2021-12-01
ISBN:9787564199159
定价:¥79.00
购买这本书可以去
内容简介
本书从场论语言出发,系统介绍了电磁现象背后的物理理论经典电动力学,阐述了电磁场的基本概念、物理原理和解决实际问题的方法。全书正文共分为8章,涵盖了数学预备知识,麦克斯韦方程组,静电场,静磁场,电磁波,电磁辐射,狭义相对论,带电粒子与电磁场的相互作用等内容。书末的附录就正文部分涉及的一些数学知识做了详细阐述,并列出主要参考书目。为方便初学者阅读和对照,在不影响主要内容的前提下,本书尽量保留了推导过程。本书可作为理工科大学和高等师范院校物理专业的教学用书,也可供研究生和相关领域的教学科研工作者参考。
作者简介
郭昊,东南大学物理系教授,博士生导师,主讲“电动力学”“高等量子力学”等课程近10年。先后获清华大学物理系学士、硕士和美国芝加哥大学物理系博士学位。近年来研究兴趣包括超冷原子物理、凝聚态物理中的无序现象以及有限温度量子体系的拓扑与动力学相变等。
目录
Chapter 1 Mathematical Foundations
1.1 Fields in E3
1.1.1 Symbol Conventions
1.1.2 Coordinate Transformations
1.1.3 Scalar, Vector and Tensor
1.1.4 Pseudo Scalar and Pseudo Vector
1.2 Vector Calculus in E3
1.2.1 Derivatives in E3
1.2.2 Differentiation of Fields
1.2.3 Second Derivatives of Fields
1.2.4 Helmholtz Theorem
Chapter 2 Electromagnetic Phenomenon
2.1 Electrostatics
2.1.1 The Electric Field
2.1.2 Equations of Electrostatic Fields
2.1.3 Electric Scalar Potential
2.2 Magnetostatics
2.2.1 Charge Conservation
2.2.2 Magnetic Field
2.2.3 Equations of Magnetostatic Fields
2.2.4 Magnetic Vector Potential
2.3 Maxwell's Equations
2.3.1 Electrodynamics Before Maxwell
2.3.2 Maxwell's Equations
2.3.3 Magnetic Charges and Symmetry
2.4 Maxwell's Equations in Dielectrics
2.4.1 Polarization
2.4.2 Magnetization
2.4.3 Maxwell's Equations in Matter
2.5 Boundary Conditions
2.5.1 Normal Direction
2.5.2 Tangent Direction
2.6 Energy and Momentum of Electromagnetic Field
2.6.1 Energy Conservation, Poynting's Theorem
2.6.2 Momentum Conservation
2.6.3 Uniqueness Theorem in Electromagnetism
2.6.4 Divergence of Point-Charge Self-Energy
Problems
Chapter 3 Electrostatics
3.1 Electrostatic Field and Scalar Potential
3.2 Electric Potential
3.3 Uniqueness Theorems
3.3.1 Uniqueness Theorem in Dielectrics
3.3.2 Conductors and the Second Uniqueness Theorem
3.4 Separation of Variables
3.4.1 Cartesian Coordinates
3.4.2 Spherical Coordinates
3.4.3 Cylindrical Coordinates
3.5 The Method of Images
3.6 Method of Green's Function
3.6.1 Green's Function
3.6.2 Green's Formula and Boundary Value Problems
3.6.3 Interchanging Symmetry of Green's Functions
3.6.4 Examples
3.7 Surface Charge Density, Coulomh's Law and Poisson's Equation
3.7.1 A General Discussion
3.7.2 Examples
3.8 Multipole Expansion
3.8.1 Expansion in Cartesian Coordinates
3.8.2 Expansion in Spherical Coordinates
3.8.3 Energy of a Charge Distribution in External Fields
Problems
Chapter 4 Magnetostaties
4.1 Magnetic Vector Potential
4.1.1 Gauge Conditions
4.1.2 Differential Equation
4.1.3 Boundary Conditions
4.1.4 Energy of Magnetostaic Fields
4.1.5 Examples
4.2 Uniqueness Theorem
4.3 Magnetic Scalar Potential
4.3.1 Differential Equations
4.3.2 Boundary Conditions
4.3.3 Examples
4.4 A Parallel Discussion of Sec
4.4.1 A General Discussion
4.4.2 Examples
4.5 Magnetic Monopole and Singular String
4.5.1 Singular String
4.5.2 Some Details
4.6 Multipole Expansion
4.6.1 Expansion in Cartesian Coordinates
4.6.2 Expansion in Spherical Co0rdinates
4.6.3 Energy of a Current Distribution in External Magnetic Fields
4.7 Aharonov-Bohm Effect
Problems
Chapter 5 Electromagnetic Waves
5.1 Electromagnetic Wave in Free Space
5.1.1 Wave Equations
5.1.2 Planar Waves
5.1.3 Energy and Momentum of EM Waves
5.2 Reflection and Transmission of EM Waves
5.2.1 Law of Reflection and Refraction
5.2.2 Fresnel's Formula
5.2.3 Brewster's Angle
5.2.4 Total Reflection
5.3 EM Waves in Conductors
5.3.1 Perfect and Good Conductors
5.3.2 Wave Equations in Good Conductors
5.3.3 Reflection and Transmission on a Conducting Surface
5.4 Cavity Resonator
5.4.1 Cuboid Resonator
5.4.2 * Microsphere Resonator
5.5 Wave Guide
5.5.1 Rectangular Waveguide
5.5.2 Wave Mode
5.5.3 Cut-off Frequency
5.5.4 Wave Velocities
5.5.5 Physical Picture of TEl0 Mode
Problems
Chapter 6 Radiation
6.1 The Potential Formation
6.1.1 Vector and Scalar Potentials
6.1.2 Gauge Invariance
6.1.3
1.1 Fields in E3
1.1.1 Symbol Conventions
1.1.2 Coordinate Transformations
1.1.3 Scalar, Vector and Tensor
1.1.4 Pseudo Scalar and Pseudo Vector
1.2 Vector Calculus in E3
1.2.1 Derivatives in E3
1.2.2 Differentiation of Fields
1.2.3 Second Derivatives of Fields
1.2.4 Helmholtz Theorem
Chapter 2 Electromagnetic Phenomenon
2.1 Electrostatics
2.1.1 The Electric Field
2.1.2 Equations of Electrostatic Fields
2.1.3 Electric Scalar Potential
2.2 Magnetostatics
2.2.1 Charge Conservation
2.2.2 Magnetic Field
2.2.3 Equations of Magnetostatic Fields
2.2.4 Magnetic Vector Potential
2.3 Maxwell's Equations
2.3.1 Electrodynamics Before Maxwell
2.3.2 Maxwell's Equations
2.3.3 Magnetic Charges and Symmetry
2.4 Maxwell's Equations in Dielectrics
2.4.1 Polarization
2.4.2 Magnetization
2.4.3 Maxwell's Equations in Matter
2.5 Boundary Conditions
2.5.1 Normal Direction
2.5.2 Tangent Direction
2.6 Energy and Momentum of Electromagnetic Field
2.6.1 Energy Conservation, Poynting's Theorem
2.6.2 Momentum Conservation
2.6.3 Uniqueness Theorem in Electromagnetism
2.6.4 Divergence of Point-Charge Self-Energy
Problems
Chapter 3 Electrostatics
3.1 Electrostatic Field and Scalar Potential
3.2 Electric Potential
3.3 Uniqueness Theorems
3.3.1 Uniqueness Theorem in Dielectrics
3.3.2 Conductors and the Second Uniqueness Theorem
3.4 Separation of Variables
3.4.1 Cartesian Coordinates
3.4.2 Spherical Coordinates
3.4.3 Cylindrical Coordinates
3.5 The Method of Images
3.6 Method of Green's Function
3.6.1 Green's Function
3.6.2 Green's Formula and Boundary Value Problems
3.6.3 Interchanging Symmetry of Green's Functions
3.6.4 Examples
3.7 Surface Charge Density, Coulomh's Law and Poisson's Equation
3.7.1 A General Discussion
3.7.2 Examples
3.8 Multipole Expansion
3.8.1 Expansion in Cartesian Coordinates
3.8.2 Expansion in Spherical Coordinates
3.8.3 Energy of a Charge Distribution in External Fields
Problems
Chapter 4 Magnetostaties
4.1 Magnetic Vector Potential
4.1.1 Gauge Conditions
4.1.2 Differential Equation
4.1.3 Boundary Conditions
4.1.4 Energy of Magnetostaic Fields
4.1.5 Examples
4.2 Uniqueness Theorem
4.3 Magnetic Scalar Potential
4.3.1 Differential Equations
4.3.2 Boundary Conditions
4.3.3 Examples
4.4 A Parallel Discussion of Sec
4.4.1 A General Discussion
4.4.2 Examples
4.5 Magnetic Monopole and Singular String
4.5.1 Singular String
4.5.2 Some Details
4.6 Multipole Expansion
4.6.1 Expansion in Cartesian Coordinates
4.6.2 Expansion in Spherical Co0rdinates
4.6.3 Energy of a Current Distribution in External Magnetic Fields
4.7 Aharonov-Bohm Effect
Problems
Chapter 5 Electromagnetic Waves
5.1 Electromagnetic Wave in Free Space
5.1.1 Wave Equations
5.1.2 Planar Waves
5.1.3 Energy and Momentum of EM Waves
5.2 Reflection and Transmission of EM Waves
5.2.1 Law of Reflection and Refraction
5.2.2 Fresnel's Formula
5.2.3 Brewster's Angle
5.2.4 Total Reflection
5.3 EM Waves in Conductors
5.3.1 Perfect and Good Conductors
5.3.2 Wave Equations in Good Conductors
5.3.3 Reflection and Transmission on a Conducting Surface
5.4 Cavity Resonator
5.4.1 Cuboid Resonator
5.4.2 * Microsphere Resonator
5.5 Wave Guide
5.5.1 Rectangular Waveguide
5.5.2 Wave Mode
5.5.3 Cut-off Frequency
5.5.4 Wave Velocities
5.5.5 Physical Picture of TEl0 Mode
Problems
Chapter 6 Radiation
6.1 The Potential Formation
6.1.1 Vector and Scalar Potentials
6.1.2 Gauge Invariance
6.1.3
猜您喜欢