书籍详情
智能数据分析:入门、实战与平台构建
作者:陈雪莹 著
出版社:机械工业出版社
出版时间:2022-08-01
ISBN:9787111710646
定价:¥119.00
购买这本书可以去
内容简介
这是一本从实战角度解读如何进行智能数据分析及搭建智能数据分析平台的工具书,目的是帮助读者全面认识并在实际工作中灵活使用智能数据分析方法和工具,同时构建可用的智能数据分析环境。本书不仅包含关于智能数据分析的基础知识,还包含进行智能数据分析必备的方法、工具、案例,以及平台的搭建方案。书中融入了作者多年的一线实践经验,而且在体系化、可视化、易学性等方面下了很大功夫。本书面向初级、中级数据分析人员及数据分析平台产品经理。为了帮助读者理解,书中不仅采用通俗易懂的语言,而且提供了百余幅作者专门绘制的示意图,更为难能可贵的是,书中包含了大量一线实践案例。全书共分为8章。第1、2章在全面剖析智能数据分析及其发展历程的基础上,从痛、悟、层、法角度深入解读了做好智能数据分析必备的四大基础知识。这四类基础知识分别回答了“为什么”“是什么”“有什么”“怎么办”四个方面的问题。第3~5章从数据资产管理、数据统计与数据挖掘、数据可视化三个方面分享了做好智能数据分析的思路、方法与技巧。其中,从管、存、算、规、治五个方面展开介绍数据资产管理;基于算法模型介绍了描述、诊断、预测、指导四个方面的分析方法;从多个维度介绍如何构建好的可视化图表、报告以及可视化案例,帮助广大读者讲好数据故事。第6~8章介绍如何量身定制自己的智能数据分析平台。这部分不仅分析了智能数据分析平台的构建方法和相应的行业实践,还从架构角度介绍了一个功能完善的智能数据分析平台需要具备哪些要素、模块。
作者简介
陈雪莹 现就职于明源云,曾就职于远光软件,拥有多年企业管理软件实施及数据分析平台产品管理一线从业经历,在数据分析、产品设计及项目管理方面拥有丰富的经验。曾主导某大型集团企业资金管理信息化标准体系搭建、数字化创新应用平台产品规划及设计。主导规划及设计的产品已成功支撑大型集团企业、行业协会、政府部门等完成数据分析项目建设。通过PMP项目管理认证,参与并获得专利授权6项。
目录
前言
第一部分 基础知识
第1章 初识智能数据分析2
1.1 智能数据分析的定义2
1.2 基础理论体系3
1.2.1 DIKW3
1.2.2 CRISP-DM6
1.3 数据分析的发展8
1.3.1 分析思路的演进9
1.3.2 分析工具的发展11
1.3.3 组织体系的变革13
1.3.4 未来趋势15
1.4 本章小结18
第2章 智能数据分析基本知识19
2.1 数据分析之“痛”19
2.1.1 数据找不到19
2.1.2 数据质量差20
2.1.3 分析手段旧21
2.1.4 分析效率低21
2.1.5 数据杂乱21
2.2 数据分析之“悟”21
2.2.1 数据“收纳”21
2.2.2 寻找“好数据”25
2.2.3 向“数据科学家”看齐26
2.3 数据分析之“层”27
2.3.1 描述性分析29
2.3.2 诊断性分析34
2.3.3 预测性分析38
2.3.4 指导性分析39
2.4 数据分析之“法”41
2.4.1 分析思维41
2.4.2 分析方法42
2.5 本章小结43
第二部分 理论方法
第3章 数据资产管理46
3.1 认识数据资产管理47
3.1.1 发展历程47
3.1.2 基本内容48
3.2 数据之“管”50
3.2.1 数据的4个层次50
3.2.2 元数据52
3.2.3 数据标签53
3.2.4 主数据55
3.3 数据之“存”57
3.3.1 数据湖58
3.3.2 数据仓库59
3.3.3 数据集市60
3.4 数据之“算”61
3.4.1 数据清洗62
3.4.2 数据加工63
3.4.3 数据ETL65
3.5 数据之“规”65
3.5.1 数据标准65
3.5.2 规范制度67
3.6 数据之“治”67
3.6.1 高层负责67
3.6.2 组织保障68
3.6.3 机制建立68
3.7 本章小结69
第4章 数据统计及数据挖掘70
4.1 相关基础概念70
4.2 描述性统计分析方法71
4.2.1 常规统计72
4.2.2 集中趋势统计72
4.2.3 离散趋势统计76
4.3 诊断性分析方法77
4.3.1 因素分析法78
4.3.2 上卷与下钻78
4.3.3 关联分析79
4.4 预测性分析方法80
4.4.1 线性回归81
4.4.2 逻辑回归82
4.4.3 K-Means算法84
4.5 指导性分析方法85
4.5.1 决策树85
4.5.2 随机森林87
4.5.3 协同过滤88
4.5.4 神经网络90
4.6 本章小结93
第5章 数据可视化分析94
5.1 可视化简史94
5.1.1 18世纪以前:图形符号94
5.1.2 18~19世纪:统计图形从萌芽到繁盛95
5.1.3 20世纪:多维信息图形规范化98
5.1.4 21世纪以来:交互可视化99
5.2 可视化图表基础理论100
5.2.1 比较分析101
5.2.2 构成分析106
5.2.3 分布分析110
5.2.4 关联分析116
5.3 “好图表”和“坏图表”119
5.3.1 好看119
5.3.2 好懂123
5.3.3 好用125
5.4 “好报告”和“坏报告”127
5.4.1 布局合理129
5.4.2 色彩统一133
5.4.3 字体、字号协调133
5.5 可视化案例133
5.6 本章小结136
第三部分 平台实战
第6章 企业级智能数据分析平台搭建138
6.1 构建数据分析“生态系统”138
6.1.1 数据生态的范畴138
6.1.2 构建有效的组织体系141
6.1.3 营造良好的数据文化氛围145
6.2 搭建智能数据分析平台149
6.2.1 平台愿景150
6.2.2 基础设施151
6.2.3 建设内容155
6.3 本章小结160
第7章 企业级数据分析平台必备的能力161
7.1 多源化数据汇聚能力162
7.1.1 批式数据接入能力163
7.1.2 实时数据感知能力164
7.2 体系化指标管理能力168
7.2.1 指标体系构建能力169
7.2.2 指标计算及关系管理能力170
7.3 可视化数据准备能力173
7.3.1 数据清洗及加工能力173
7.3.2 数据链路管理及更新能力179
7.4 自助式分析展示能力179
7.4.1 多维度图表分析展示能力179
7.4.2 多表头表格分析展示能力185
7.4.3 出具多样化分析报告能力187
7.5 可管理的模型构建能力190
7.5.1 数据模型构建能力191
7.5.2 指标模型构建能力191
7.5.3 算法模型构建能力192
7.5.4 展示模型构建能力193
7.6 智能化搜索推荐能力193
7.6.1 智能数据搜索推荐能力194
7.6.2 智能问答语义解析能力197
7.6.3 智能文本生成能力200
7.7 本章小结201
第8章 智能数据分析平台应用案例及实践202
8.1 政府宏观经济大数据仓库202
8.1.1 宏观经济数据汇聚203
8.1.2 数据标准建立203
8.1.3 平台运行情况监控210
8.1.4 宏观经济分析场景211
8.2 电商运营与管理分析平台213
8.2.1 用户行为分析及商品推荐213
8.2.2 商品发售及库存安排216
8.2.3 销售情况实时监控217
8.3 集团企业经营管理数据分析平台218
8.3.1 分析平台门户218
8.3.2 经营管理指标体系构建219
8.3.3 主题场景模型搭建229
8.3.4 管理分析平台的应用230
8.4 本章小结232
第一部分 基础知识
第1章 初识智能数据分析2
1.1 智能数据分析的定义2
1.2 基础理论体系3
1.2.1 DIKW3
1.2.2 CRISP-DM6
1.3 数据分析的发展8
1.3.1 分析思路的演进9
1.3.2 分析工具的发展11
1.3.3 组织体系的变革13
1.3.4 未来趋势15
1.4 本章小结18
第2章 智能数据分析基本知识19
2.1 数据分析之“痛”19
2.1.1 数据找不到19
2.1.2 数据质量差20
2.1.3 分析手段旧21
2.1.4 分析效率低21
2.1.5 数据杂乱21
2.2 数据分析之“悟”21
2.2.1 数据“收纳”21
2.2.2 寻找“好数据”25
2.2.3 向“数据科学家”看齐26
2.3 数据分析之“层”27
2.3.1 描述性分析29
2.3.2 诊断性分析34
2.3.3 预测性分析38
2.3.4 指导性分析39
2.4 数据分析之“法”41
2.4.1 分析思维41
2.4.2 分析方法42
2.5 本章小结43
第二部分 理论方法
第3章 数据资产管理46
3.1 认识数据资产管理47
3.1.1 发展历程47
3.1.2 基本内容48
3.2 数据之“管”50
3.2.1 数据的4个层次50
3.2.2 元数据52
3.2.3 数据标签53
3.2.4 主数据55
3.3 数据之“存”57
3.3.1 数据湖58
3.3.2 数据仓库59
3.3.3 数据集市60
3.4 数据之“算”61
3.4.1 数据清洗62
3.4.2 数据加工63
3.4.3 数据ETL65
3.5 数据之“规”65
3.5.1 数据标准65
3.5.2 规范制度67
3.6 数据之“治”67
3.6.1 高层负责67
3.6.2 组织保障68
3.6.3 机制建立68
3.7 本章小结69
第4章 数据统计及数据挖掘70
4.1 相关基础概念70
4.2 描述性统计分析方法71
4.2.1 常规统计72
4.2.2 集中趋势统计72
4.2.3 离散趋势统计76
4.3 诊断性分析方法77
4.3.1 因素分析法78
4.3.2 上卷与下钻78
4.3.3 关联分析79
4.4 预测性分析方法80
4.4.1 线性回归81
4.4.2 逻辑回归82
4.4.3 K-Means算法84
4.5 指导性分析方法85
4.5.1 决策树85
4.5.2 随机森林87
4.5.3 协同过滤88
4.5.4 神经网络90
4.6 本章小结93
第5章 数据可视化分析94
5.1 可视化简史94
5.1.1 18世纪以前:图形符号94
5.1.2 18~19世纪:统计图形从萌芽到繁盛95
5.1.3 20世纪:多维信息图形规范化98
5.1.4 21世纪以来:交互可视化99
5.2 可视化图表基础理论100
5.2.1 比较分析101
5.2.2 构成分析106
5.2.3 分布分析110
5.2.4 关联分析116
5.3 “好图表”和“坏图表”119
5.3.1 好看119
5.3.2 好懂123
5.3.3 好用125
5.4 “好报告”和“坏报告”127
5.4.1 布局合理129
5.4.2 色彩统一133
5.4.3 字体、字号协调133
5.5 可视化案例133
5.6 本章小结136
第三部分 平台实战
第6章 企业级智能数据分析平台搭建138
6.1 构建数据分析“生态系统”138
6.1.1 数据生态的范畴138
6.1.2 构建有效的组织体系141
6.1.3 营造良好的数据文化氛围145
6.2 搭建智能数据分析平台149
6.2.1 平台愿景150
6.2.2 基础设施151
6.2.3 建设内容155
6.3 本章小结160
第7章 企业级数据分析平台必备的能力161
7.1 多源化数据汇聚能力162
7.1.1 批式数据接入能力163
7.1.2 实时数据感知能力164
7.2 体系化指标管理能力168
7.2.1 指标体系构建能力169
7.2.2 指标计算及关系管理能力170
7.3 可视化数据准备能力173
7.3.1 数据清洗及加工能力173
7.3.2 数据链路管理及更新能力179
7.4 自助式分析展示能力179
7.4.1 多维度图表分析展示能力179
7.4.2 多表头表格分析展示能力185
7.4.3 出具多样化分析报告能力187
7.5 可管理的模型构建能力190
7.5.1 数据模型构建能力191
7.5.2 指标模型构建能力191
7.5.3 算法模型构建能力192
7.5.4 展示模型构建能力193
7.6 智能化搜索推荐能力193
7.6.1 智能数据搜索推荐能力194
7.6.2 智能问答语义解析能力197
7.6.3 智能文本生成能力200
7.7 本章小结201
第8章 智能数据分析平台应用案例及实践202
8.1 政府宏观经济大数据仓库202
8.1.1 宏观经济数据汇聚203
8.1.2 数据标准建立203
8.1.3 平台运行情况监控210
8.1.4 宏观经济分析场景211
8.2 电商运营与管理分析平台213
8.2.1 用户行为分析及商品推荐213
8.2.2 商品发售及库存安排216
8.2.3 销售情况实时监控217
8.3 集团企业经营管理数据分析平台218
8.3.1 分析平台门户218
8.3.2 经营管理指标体系构建219
8.3.3 主题场景模型搭建229
8.3.4 管理分析平台的应用230
8.4 本章小结232
猜您喜欢