书籍详情
面向中文网络百科知识图谱的高性能并行去噪关键技术研究
作者:王汀
出版社:科学技术文献出版社
出版时间:2022-02-01
ISBN:9787518984411
定价:¥36.00
购买这本书可以去
内容简介
为了解决中文百科系统中的知识去噪问题,首先,在数据场理论的基础上,本书中提出了一种基于多特征融合的新方法来计算“未登录标签”之间的语义距离,以使去噪效果得到进一步的提升。其次,基于Spark计算引擎及其广播机制对所提出的去噪算法进行了并行实现和优化改进,以使其具备良好的可扩展性。后,在去噪效果和时间效率方面与**的分布式中文百科知识去噪算法做了全面的对比分析。
作者简介
暂缺《面向中文网络百科知识图谱的高性能并行去噪关键技术研究》作者简介
目录
第1章 绪论
1.1 研究背景
1.2 研究意义与价值
1.3 国内外研究现状
1.4 本书的主要内容及创新点
第2章 相关概念和问题描述
2.1 知识三元组
2.2 三元组的开放分类标签集
2.3 数据场及其势函数
2.4 中文同义词词林
2.5 由标签集引起的实体知识不恰当归类
第3章 知识三元组的初始相似度计算
3.1 中文网络百科原始知识图谱的构建
3.2 基于编辑距离和同义词词林相融合的三元组初识相似度计算
3.3 基于数据场的标签语义距离相似度计算
3.4 根据三元组势值排名对知识图谱进行去噪和精炼
3.5 实验结果及分析
3.6 本章总结与展望
第4章 基于MapReduce的初始相似度计算并行优化
4.1 MapReduce并行计算框架简介
4.2 基于MapReduce的初始相似度并行计算总体框架
4.3 数据依赖分析与证明
4.4 基于MapReduce的初始相似度算法并行化实现
4.5 实验环境与配置
4.6 实验结果及分析
4.7 本章总结与展望
第5章 基于改进的标签集势函数的知识库语义量化
5.1 基于笛卡尔积的三元组语义相似度度量优化
5.2 基于多特征融合的标签语义距离计算优化
5.3 基于标签集势函数的知识图谱去噪
5.4 对知识图谱去噪与精炼的举例说明
5.5 实验结果及分析
5.6 本章总结与展望
第6章 基于Spark的中文百科知识图谱去噪算法并行优化
6.1 Spark并行计算框架简介
6.2 基于Spark的TripleES算法并行化改造
6.3 TriplePV三元组势值计算算法的并行化改造
6.4 实验环境与配置
6.5 实验结果及分析
6.6 本章总结与展望
第7章 全书总结
参考文献
1.1 研究背景
1.2 研究意义与价值
1.3 国内外研究现状
1.4 本书的主要内容及创新点
第2章 相关概念和问题描述
2.1 知识三元组
2.2 三元组的开放分类标签集
2.3 数据场及其势函数
2.4 中文同义词词林
2.5 由标签集引起的实体知识不恰当归类
第3章 知识三元组的初始相似度计算
3.1 中文网络百科原始知识图谱的构建
3.2 基于编辑距离和同义词词林相融合的三元组初识相似度计算
3.3 基于数据场的标签语义距离相似度计算
3.4 根据三元组势值排名对知识图谱进行去噪和精炼
3.5 实验结果及分析
3.6 本章总结与展望
第4章 基于MapReduce的初始相似度计算并行优化
4.1 MapReduce并行计算框架简介
4.2 基于MapReduce的初始相似度并行计算总体框架
4.3 数据依赖分析与证明
4.4 基于MapReduce的初始相似度算法并行化实现
4.5 实验环境与配置
4.6 实验结果及分析
4.7 本章总结与展望
第5章 基于改进的标签集势函数的知识库语义量化
5.1 基于笛卡尔积的三元组语义相似度度量优化
5.2 基于多特征融合的标签语义距离计算优化
5.3 基于标签集势函数的知识图谱去噪
5.4 对知识图谱去噪与精炼的举例说明
5.5 实验结果及分析
5.6 本章总结与展望
第6章 基于Spark的中文百科知识图谱去噪算法并行优化
6.1 Spark并行计算框架简介
6.2 基于Spark的TripleES算法并行化改造
6.3 TriplePV三元组势值计算算法的并行化改造
6.4 实验环境与配置
6.5 实验结果及分析
6.6 本章总结与展望
第7章 全书总结
参考文献
猜您喜欢