书籍详情

Fault Diagnosis and Fault Tolerant Control of Aerospace Power Systems Based on Sliding Mode Theory 基于滑模理论的航空动力系统故障诊断与容错控制

Fault Diagnosis and Fault Tolerant Control of Aerospace Power Systems Based on Sliding Mode Theory 基于滑模理论的航空动力系统故障诊断与容错控制

作者:肖玲斐 林聪 著

出版社:北京航空航天大学出版社

出版时间:2022-03-01

ISBN:9787512436282

定价:¥79.00

购买这本书可以去
内容简介
  In the field of aerospace power systems, there are few books on fault diagnosis and fault tolerant control based on sliding mode theory. On the basis of authors many years of technical research and the results of many scientific research projects, this book comprehensively expounds the key theories and main methods of fault diagnosis and fault tolerant control of aerospace power systems based on sliding mode theory. Several design methods for sliding mode observers and sliding mode controllers are introduced, and are utilized to realize fault diagnosis and fault tolerant control for some typical aerospace power systems. This book has remarkable characteristics of combining theory with engineering.Except the Chapter 1 which is the introduction, there are three parts in this book. The first part is about fault diagnosis methods for aerospace power systems, which includes six chapters. The second part includes five chapters and different sliding mode control methods for aerospace power systems are given. The third part is comprised of the remaining seven chapters, in which several fault tolerant control methods for aerospacepower systems are discussed.This book can be used as reference book for scientific researchers, engineering technicians, teachers and senior undergraduates, masters and doctoral students, who are in the field of aerospace, automation, power machinery and engineering, specially enengaged in the research and application of system modeling,control,fault diagnosis, fault tolerance,etc.
作者简介
暂缺《Fault Diagnosis and Fault Tolerant Control of Aerospace Power Systems Based on Sliding Mode Theory 基于滑模理论的航空动力系统故障诊断与容错控制》作者简介
目录
Chapter 1 Introduction  1
1.1 Fault Diagnosis and Fault Tolerant Control Theory 1
1.1.1 Faults Classification  1
1.1.2 Fault Diagnosis  5
1.1.3 Fault Tolerant Control  7
1.2 Sliding Mode Theory  11
1.2.1 Sliding Mode Control  11
1.2.2 Sliding Mode Observer  12
1.3 Fault Diagnosis and Fault Tolerant Control Based on Sliding Mode  13
1.3.1 Fault Diagnosis Based on Sliding Mode Observer  13
1.3.2 Sliding Mode Fault Tolerant Control  14
1.4 Fault Diagnosis and Fault Tolerant Control in Aircraft Power Systems  15
1.4.1 Sliding Mode Fault Diagnosis in Aircraft Power Systems  15
1.4.2 Sliding Mode Fault Tolerant Control in Aircraft Power Systems 16
1.5 Structure of This Book  16
Chapter 2 Aircraft Engine Sensor Faults Diagnosis Based on Sliding Mode Observer by Using Residual  18
2.1 Aircraft Engine Mathematical Model  18
2.1.1 Aircraft Engine Linear Model  18
2.1.2 Establishment of Aircraft Engine State Space Variable Model Based on Least Square Fitting  21
2.2 Mathematical Model of Sensor Fault in Aircraft Engine  23
2.3 Fault Diagnosis Method Based on Residual Error  23
2.3.1 System Model with Sensor Faults 24
2.3.2 Observer Design and Stability Analysis  24
2.3.3 Parameter Solution of Sliding Mode Observer Based on Linear Matrix Inequality  25
2.3.4 Sensor Fault Detection Based on Sliding Mode Observer  27
2.4 Simulation  28
2.5 Conclusions  31
Chapter 3 Multi-sensors Fault Diagnosis of Aircraft Engine Based on Kalman Filter Group  32
3.1 Introduction  32
3.2 Aircraft Engine Model  33
3.3 Design of Sensor Fault Diagnosis System for Aircraft Engine  35
3.3.1 Single Sensor Fault Diagnosis  35
3.3.2 Multi-sensors Fault Diagnosis  36
3.4 Simulation  37
3.5 Conclusions  46
Chapter 4 Fault Identification for Turboshaft Engines Based on Fractional-order Sliding Mode Observer  47
4.1 Introduction  47
4.2 Turboshaft Engine Linearized Model  48
4.3 Fault Identification Based on Fractional-order Sliding Mode Observer  49
4.4 Simulation  51
4.5 Conclusions  55
Chapter 5 Robust Fault Identification of Turbofan Engine Sensors Based on Fractional-order Integral Sliding Mode Observer  56
5.1 Introduction  56
5.2 Equilibrium Manifold Expansion Model of Turbofan Engine  57
5.3 Fractional-order Integral Sliding Mode Observer for Fault Identification  58
5.3.1 Preliminaries of Fractional-order Calculus  58
5.3.2 Design of Fractional-order Integral Sliding Mode Observer  59
5.4 Simulation  64
5.5 Conclusions  70
Chapter 6 Aircraft Engine Gas Path Fault Diagnosis Based on HPSO-TWSVM  71
6.1 Introduction  71
6.2 A Description of Aircraft Engine Gas Path Fault Diagnosis  71
6.3 Basic Principle of TWSVM  73
6.4 Algorithm of TWSVM Based on HPSO-TWSVM  74
6.4.1 Characters and Principle of HPSO  74
6.4.2 Selection of Kernel Function  77
6.4.3 Training Algorithm of TWSVM  78
6.5 Gas Path Fault Diagnosis Based on HPSO-TWSVM  79
6.5.1 Review of Gas Path Fault Diagnosis Based on HPSO-TWSVM  79
6.5.2 Procedure of Gas Path Fault Diagnosis Based on HPSO-TWSVM  80
6.6 Simulation  82
6.7 Conclusions  84
Chapter 7 Fault Reconstruction of Actuator in Aircraft Engine Based on Equilibrium Manifold Expansion Model and Sliding Mode Observer  85
7.1 Introduction  85
7.2 Fault Reconfiguration of Actuator  86
7.3 Simulation  87
7.4 Conclusions  88
Chapter 8 Sliding Mode Control for Aircraft Engine Based on Genetic Algorithm  90
8.1 Basic Principle of Sliding Mode Control  90
8.1.1 Definition of Sliding Mode  90
8.1.2 Definition of Sliding Mode Variable Structure Control  91
8.1.3 Chattering Problem of Sliding Mode Variable Structure  92
8.1.4 Existence and Arrival Conditions of Sliding Mode  92
8.1.5 Equivalent Control and Sliding Mode  93
8.1.6 Basic Design Method of Sliding Mode Controller  94
8.1.7 Quasi-sliding Mode Control  95
8.2 Aircraft Engine Sliding Mode Control Based on Reaching Law  96
8.2.1 Sliding Mode Control Based on Exponential Reaching Law  97
8.2.2 Position Tracking Based on Exponential Reaching Law  103
8.3 Sliding Mode Control Based on Genetic Algorithm  103
8.3.1 Design of Sliding Mode Controller  104
8.3.2 Sliding Mode Controller Based on Genetic Algorithm  104
8.3.3 Simulation  106
8.4 Conclusions 108
Chapter 9 Aircraft Engine Sliding Mode Control Based on Variable Parameter Model 109
9.1 Overview of Variable Parameter Model in Envelope Range  109
9.2 Variable Parameter Model Based on BP Neural Network  109
9.3 Design of Sliding Mode Variable Structure Multivariable Control System  113
9.3.1 Requirements  113
9.3.2 Design Method of Sliding Mode Surface for Sliding Mode Control of Multivariable Systems  114
9.3.3 Sliding Mode Analysis of Sliding Mode Control for Multivariable System  116
9.4 Analysis of Reaching Law Based on Proportional-constant-variable Rate  118
9.5 Analysis of Reaching Law Based on PID  118
9.6 Simulation  120
9.7 Conclusions 125
10.1 Introduction  126
10.2 Design of Integral Fuzzy Adaptive Sliding Mode Controller for Aircraft Engine  127
10.2.1 Aircraft Engine Control System Model  127
10.2.2 Design of Hyperbolic Tangent Integral Sliding Surface  128
10.2.3 Design of Fuzzy Power Exponent Reaching Law  129
10.2.4 Design of Adaptive Fuzzy Sliding Mode Controller of Aircraft Engine  132
10.3 Simulation  133
10.4 Conclusions  137
Chapter 11 Aircraft Engine Nonlinear Sliding Mode Control Based on Artificial Bee Colony Algorithm  138
11.1 Introduction  138
11.2 Preliminaries 139
11.2.1 Exact Linearization Theory  139
11.2.2 Artificial Bee Colony Algorithm  140
11.3 ABC-based Aircraft Engine Nonlinear Sliding Mode Controller Design  141
11.4 Simulation  146
11.5 Conclusions  153
Chapter 12 Robust Control for Electric Fuel Pump with Variant Nonlinear Loads Based on a New Combined Sliding Mode Surface  154
12.1 Introduction  154
12.2 System Configuration  157
12.3 Design of Combined Sliding Mode Controller  160
12.3.1 Controller Structure 160
12.3.2 Analysis of Linear Sliding Mode  161
12.3.3 Analysis of Quadratic Integral Sliding Mode  162
12.3.4 Design of Combined Sliding Mode Control Law  164
12.4 Stability of Closed-loop System  165
12.4.1 Reachability of Combined Sliding Mode Surface  165
12.4.2 Stability of the Closed-loop System in Sliding Mode  166
12.5 Simulation  167
12.6 Conclusions  171
Chapter 13 Aircraft Engine Sliding Mode Fault Tolerant Control Based on Sliding Mode Observer  173
13.1 Robust Reconstruction of Sensor Faults Based on Sliding Mode Observer 173
13.1.1 Robust Reconstruction of Sensor Faults  178
13.1.2 Simulation  181
13.2 Design of Integral Tangent Adaptive Fuzzy Sliding Mode Fault Tolerant Control System for Aircraft Engine  186
13.3 Simulation  187
13.4 Conclusions  191
Chapter 14 Aircraft Engine Sliding Mode Fault Tolerant Control Based on Kalman Filter 192
14.1 Design of Aircraft Engine Sliding Mode Tracking Controller  192
14.1.1 Problem Description  192
14.1.2 Model Augmentation  193
14.1.3 Design of Sliding Surface  193
14.1.4 Design of Sliding Mode Control Law  195
14.1.5 Stability Analysis 196
14.2 Design of Aircraft Engine Sliding Mode Fault Tolerant Control  197
14.3 Simulation  197
14.4 Conclusions  202
Chapter 15 Sliding Mode Fault Tolerant Control for Aircraft Engine with Sensor Fault Based on PID Reaching Law  203
15.1 Introduction  203
15.2 Reconstruction of Sensor Fault Signal  203
15.3 System Description  205
15.4 Sliding Mode Fault Tolerant Controller Design for Sensor Fault 206
15.5 Simulation  207
15.5.1 Signal Reconstruction  207
15.5.2 PID Fault Tolerant Controller for Sensor Fault  209
15.5.3 H ∞ Fault Tolerant Controller for Sensor Fault  211
15.5.4 Sliding Mode Fault Tolerant Controller for Sensor Fault  213
15.6 Conclusions  214
16.1 Introduction  216
16.2 Design of Adaptive Fault Tolerant Controller 217
16.2.1 Engine Model  217
16.2.2 Adaptive Observer for Fault Diagnosis 217
16.2.3 Fault Tolerant Control Design  219
16.3 Simulation  220
16.4 Conclusions  225
Chapter 17 Sliding Mode Fault Tolerant Control for Aircraft Electric Fuel Pump with Actuator Fault 226
17.1 Fault Tolerant Controller Based on Walcott Zak Observer 226
17.1.1 Design of Fault Tolerant Control System  226
17.1.2 Simulation  228
17.2 Fault Tolerant Controller Based on Hybrid Nonsingular Fast Terminal Sliding Mode Observer  231
17.2.1 Design of Fault Tolerant Control System  231
17.2.2 Simulation  234
17.3 Conclusions  238
18.1 Introduction  239
18.2 Controller Design and Fault Tolerant Method 240
18.2.1 Problem Description  240
18.2.2 Guaranteed Cost Controller Design  242
18.2.3 Fault Tolerant Control Based on Kalman Filter  247
18.3 Simulation  248
18.4 Conclusions  250
19.1 Introduction  252
19.2 Mathematical Model of Aircraft Engine Control Systems  253
19.3 Main Results 256
19.3.1 Detection Observer Design  256
19.3.2 Adaptive Diagnostic Observer Design  256
19.3.3 Sliding Mode Fault Tolerant Control  257
19.3.4 Robust Stabilization Analysis 258
19.4 Simulation  261
19.5 Conclusions  267
References  268
猜您喜欢

读书导航