书籍详情
Melt Electrospinning:A Green Method to Produce Superfine Fibers(熔体静电纺丝——生产超细纤维的绿色方法)
作者:刘勇、李凯丽、(印度)阿泽、(新加坡)席瑞思 著
出版社:化学工业出版社
出版时间:2022-01-01
ISBN:9787122397997
定价:¥298.00
购买这本书可以去
内容简介
熔体静电纺丝是纳米纤维制造的新兴技术之一,其的特点是不用添加溶剂,具有无毒、环保、安全、经济等方面的优势。在生物医学、药物控释、组织工程等方向具有广阔的应用前景。本书基于作者多年的原创科研成果,对熔体静电纺丝技术做了全面的总结,共四部分。部分介绍了熔体静电纺丝的发明,包括离心熔体静电纺丝和向上熔体静电纺丝的独立发展,分别对两种方法的产率和纤维直径进行了优化。第二部分介绍了熔体的静电纺丝以及利用不同聚合物和自行设计的装置测试纤维性能的方法。第三部分介绍耗散粒子动力学模拟,这种模拟技术是模拟纺丝过程中分子链结构和取向的一种方法。第四部分介绍了离心熔体静电纺丝的原理、方法及改进措施。本书不仅适合静电纺丝研究的广大科研人员阅读,同时还可供燃料电池、锂电池、太阳能电池、水过滤、空气过滤、血液过滤、组织工程、载药缓释、癌症检测、介入治疗支架、人造血管、金属吸附等可能用到纳米纤维的广大领域的科技工作者﹑研究生、企业管理人员参考。
作者简介
刘勇,博导,北京化工大学材料学院高分子纳米复合材料实验室负责人。主要从事高分子及纳米复合材料制备与应用等研究。在特种高性能塑料应用、橡胶制品性能提升、塑料产品配方及工艺开发、特种功能纤维成型、静电纺丝制备超细纤维、净化甲醛及PM2.5、燃料电池和太阳能电池器件制备、纳米纤维构筑生物医学器件等方面均有研究。迄今发表期刊文章113篇,已授权专利53项,出版专著2部(其中英文专著1部)。是Advanced Science,RSC Advances,高等学校化学学报等30多种中外期刊审稿人。曾获国家科技进步二等奖1项,省部级技术发明二等奖1项和专利奖1项,北京市科学技术三等奖1项。席瑞思,新加坡国立大学纳米纤维及纳米技术研究中心主任,静电纺丝技术制备纳米纤维领域世界公认的领导者和开拓者,其对纳米纤维及应用于生物医学工程、太阳能收集、水处理方面的研究居于世界前列。当选为“英国皇家工程院院士”、“新加坡工程院院士”、“印度国家工程院院士”以及“东盟工程技术院院士”。
目录
About the authors ix
Preface xiii
Acknowledgments xv
1. Development of melt electrospinning: the past,present,and future
1.1 Electrospinning 1
1.2 The working principle of electrospinning 2
1.3 Types of electrospinning 2
1.4 Solution electrospinning 2
1.5 Melt electrospinning 3
1.6 The scope of this book 4
References 4
2. The device of melt electrospinning
2.1 Introduction 7
2.2 Conventional melt electrospinning devices 7
2.3 Laser heating melt electrospinning devices 8
2.4 Screw extrusion melting electrostatic spinning devices 9
2.5 Electromagnetic spinning devices for vibration 10
2.6 Air melt electrospinning devices 12
2.7 Coaxial melt electrospinning devices 12
2.8 Upward melt electrospinning devices 13
2.9 Centrifugal melt electrospinning devices 16
2.10 Conclusion 17
References 18
3. Formation of fibrous structure and influential factors in melt electrospinning
3.1 Polycaprolactone 22
3.1.1 Experiment 23
3.1.2 Results and discussion 23
3.2 Polylactic acid (PLA) 24
3.2.1 The diameter of PLLA fiber under a pulsed electric field 28
3.2.2 Thermal degradation of PLA fiber 31
3.2.3 The relative molecular mass of PLA fibers 39
3.2.4 Orientation and crystallinity of the PLA fiber 40
3.3 Phenolic resin 53
3.3.1 Materials and equipment 54
3.3.2 Orthogonal experimental arrangements 55
3.3.3 Optimal spinning conditions 57
3.3.4 Fiber heat resistance and crystallinity 59
3.3.5 Session conclusion 63
3.4 Polypropylene (PP) 64
3.4.1 Equipment 65
3.4.2 Effect of collecting plate on spinning electric field 72
3.4.3 Effect of upper plate on spinning electric field 73
3.4.4 Effect of the hyperbranched polymers 75
3.4.5 Effect of polar additive on PP 79
3.5 Conclusion 84
References 84
Further reading 90
4. Melt electrospinning in a parallel electric field
4.1 Introduction 91
4.2 Method and experiments 92
4.2.1 Experimental material 92
4.2.2 Parallel electrospinning equipment 93
4.2.3 Finite element modeling 94
4.2.4 Theoretical analysis 94
4.3 Results and discussion 96
4.3.1 Experimental electrospinning in a parallel electric field 96
4.3.2 Finite element simulation of the electrospinning process in a parallel electric field 97
4.4 Conclusion 100
References 100
5. Dissipative particle dynamics simulation on melt electrospinning
5.1 Introduction 103
5.2 Differential scanning calorimetry simulation under different electric fields 107
5.2.1 Electrostatic field 107
5.2.2 Pulsed electric field 111
5.3 Conclusion 119
References 119
6. Experimental study on centrifugal melt electrospinning
6.1 Overview of centrifugal melt electrospinning 123
6.2 Research progress of centrifugal melt electrospinning at home and abroad 125
6.3 The significance of centrifugal melt electrospinning devices 128
6.4 Experimental study on centrifugal melt electrospinning 129
6.4.1 Experimental section 129
6.4.2 Characterization method 131
6.4.3 Results and discussion 132
6.5 Innovative design of centrifugal melt electrospinning devices 140
6.6 Conclusion 141
References 142
7. Dissipative particle dynamics simulations of centrifugal melt electrospinning
7.1 Introduction 145
7.2 The dissipative particle dynamics model in centrifugal melt electrospinning 146
7.3 Different electric field simulation of centrifugal melt electrospinning 148
7.3.1 Centrifugal melt electrospinning in an electrostatic field 149
7.3.2 Centrifugal melt electrospinning in a pulsed electric field 153
7.4 Conclusion 156
References 156
8. Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials
8.1 Introduction 159
8.2 Basic principles of 3D printing based on electrospinning 160
8.3 Different auxiliary electrode and dielectric plate collectors 161
8.3.1 Setup for electrospinning with an electrostatic lens system 163
8.3.2 Dielectric plate with sharp-pin electrode 166
8.4 Patterned,tubular,and porous nanofiber 166
8.5 Conclusion 168
References 168
9. Fiber membranes obtained by melt electrospinning for drug delivery
9.1 Introduction 173
9.2 Experimental 175
9.2.1 Materials 175
9.2.2 Processing of the blends 175
9.2.3 Melt electrospinning 175
9.3 Results and discussion 177
9.3.1 Fiber membrane morphology 177
9.3.2 Fourier transformed infrared spectroscopy 179
9.3.3 Differential scanning calorimetry 181
9.3.4 X-ray diffraction 183
9.3.5 Electron spin-resonance probe spectroscopy of polylactic acid (PLA)/polyhydroxybutyrate (PHB) electrospun mats 184
9.3.6 Impact of diffusion upon controlled drug release 187
9.4 Conclusion 191
References 191
Index 197
Preface xiii
Acknowledgments xv
1. Development of melt electrospinning: the past,present,and future
1.1 Electrospinning 1
1.2 The working principle of electrospinning 2
1.3 Types of electrospinning 2
1.4 Solution electrospinning 2
1.5 Melt electrospinning 3
1.6 The scope of this book 4
References 4
2. The device of melt electrospinning
2.1 Introduction 7
2.2 Conventional melt electrospinning devices 7
2.3 Laser heating melt electrospinning devices 8
2.4 Screw extrusion melting electrostatic spinning devices 9
2.5 Electromagnetic spinning devices for vibration 10
2.6 Air melt electrospinning devices 12
2.7 Coaxial melt electrospinning devices 12
2.8 Upward melt electrospinning devices 13
2.9 Centrifugal melt electrospinning devices 16
2.10 Conclusion 17
References 18
3. Formation of fibrous structure and influential factors in melt electrospinning
3.1 Polycaprolactone 22
3.1.1 Experiment 23
3.1.2 Results and discussion 23
3.2 Polylactic acid (PLA) 24
3.2.1 The diameter of PLLA fiber under a pulsed electric field 28
3.2.2 Thermal degradation of PLA fiber 31
3.2.3 The relative molecular mass of PLA fibers 39
3.2.4 Orientation and crystallinity of the PLA fiber 40
3.3 Phenolic resin 53
3.3.1 Materials and equipment 54
3.3.2 Orthogonal experimental arrangements 55
3.3.3 Optimal spinning conditions 57
3.3.4 Fiber heat resistance and crystallinity 59
3.3.5 Session conclusion 63
3.4 Polypropylene (PP) 64
3.4.1 Equipment 65
3.4.2 Effect of collecting plate on spinning electric field 72
3.4.3 Effect of upper plate on spinning electric field 73
3.4.4 Effect of the hyperbranched polymers 75
3.4.5 Effect of polar additive on PP 79
3.5 Conclusion 84
References 84
Further reading 90
4. Melt electrospinning in a parallel electric field
4.1 Introduction 91
4.2 Method and experiments 92
4.2.1 Experimental material 92
4.2.2 Parallel electrospinning equipment 93
4.2.3 Finite element modeling 94
4.2.4 Theoretical analysis 94
4.3 Results and discussion 96
4.3.1 Experimental electrospinning in a parallel electric field 96
4.3.2 Finite element simulation of the electrospinning process in a parallel electric field 97
4.4 Conclusion 100
References 100
5. Dissipative particle dynamics simulation on melt electrospinning
5.1 Introduction 103
5.2 Differential scanning calorimetry simulation under different electric fields 107
5.2.1 Electrostatic field 107
5.2.2 Pulsed electric field 111
5.3 Conclusion 119
References 119
6. Experimental study on centrifugal melt electrospinning
6.1 Overview of centrifugal melt electrospinning 123
6.2 Research progress of centrifugal melt electrospinning at home and abroad 125
6.3 The significance of centrifugal melt electrospinning devices 128
6.4 Experimental study on centrifugal melt electrospinning 129
6.4.1 Experimental section 129
6.4.2 Characterization method 131
6.4.3 Results and discussion 132
6.5 Innovative design of centrifugal melt electrospinning devices 140
6.6 Conclusion 141
References 142
7. Dissipative particle dynamics simulations of centrifugal melt electrospinning
7.1 Introduction 145
7.2 The dissipative particle dynamics model in centrifugal melt electrospinning 146
7.3 Different electric field simulation of centrifugal melt electrospinning 148
7.3.1 Centrifugal melt electrospinning in an electrostatic field 149
7.3.2 Centrifugal melt electrospinning in a pulsed electric field 153
7.4 Conclusion 156
References 156
8. Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials
8.1 Introduction 159
8.2 Basic principles of 3D printing based on electrospinning 160
8.3 Different auxiliary electrode and dielectric plate collectors 161
8.3.1 Setup for electrospinning with an electrostatic lens system 163
8.3.2 Dielectric plate with sharp-pin electrode 166
8.4 Patterned,tubular,and porous nanofiber 166
8.5 Conclusion 168
References 168
9. Fiber membranes obtained by melt electrospinning for drug delivery
9.1 Introduction 173
9.2 Experimental 175
9.2.1 Materials 175
9.2.2 Processing of the blends 175
9.2.3 Melt electrospinning 175
9.3 Results and discussion 177
9.3.1 Fiber membrane morphology 177
9.3.2 Fourier transformed infrared spectroscopy 179
9.3.3 Differential scanning calorimetry 181
9.3.4 X-ray diffraction 183
9.3.5 Electron spin-resonance probe spectroscopy of polylactic acid (PLA)/polyhydroxybutyrate (PHB) electrospun mats 184
9.3.6 Impact of diffusion upon controlled drug release 187
9.4 Conclusion 191
References 191
Index 197
猜您喜欢