书籍详情
Transportation Systems Engineering Models and Applications(交通运输系统工程模型与应用)
作者:蒋朝哲
出版社:西南交通大学出版社
出版时间:2016-11-01
ISBN:9787564346263
定价:¥36.00
购买这本书可以去
内容简介
本书首先重新定义了交通系统,针对交通运输供给系统进行分析,特别是基于运输成本和交通流量的关系,通过交通流理论、效用函数理论等对交通运输系统用户行为以及客运与货运规律进行数学建模,其中包括交通运输网络静态和动态均衡模型,*后介绍如何通过数据对已经建立的模型校正。本书适合相关专业本科、研究生及相关的研究人员参考。
作者简介
蒋朝哲: 西南交通大学交通运输工程博士后,副教授;加拿大滑铁卢大学土木与环境工程系博士后,副研究员。主要研究方向包括系统决策理论与方法,交通运输系统工程,大数据在交通中的应用,城市交通排放(PM2.5)等领域。出版专著教材10余部,发表学术论文60余篇,其中被SCI,EI,ISTP收录近20余篇,主持主研国家自然科学基金、国家社科基金等国家省部级以及加拿大国家和省部级课题20余项。
目录
Chapter 1 Introduction to Transportation Systems Engineering 1
1.1 Introduction to Systems Engineering 1
1.1.1 A Few Definitions 1
1.1.2 Systems Engineering Principles 2
1.1.3 The ¡°V¡± Systems Engineering Model 4
1.1.4 Value of Systems Engineering 6
1.2 Applying Systems Engineering 7
1.2.1 The Traditional Project Life Cycle and Systems Engineering 7
1.2.2 Applying Systems Engineering in Project 10
1.2.3 Applying Systems Engineering in Organization 11
1.3 Model Applications and Transportation Systems Engineering 15
1.3.1 Transportation Systems Design and the Decision-Making Process 15
1.3.2 Some Areas of Models Application 20
Chapter 2 Transportation Supply Design Models and Solving Algorithm 24
2.1 General Formulations of the Supply Design Problem 24
2.2 Applications of Supply Design Models 27
2.2.1 Models for Road Network Layout Design 28
2.2.2 Models for Road Network Capacity Design 30
2.2.3 Models for Transit Network Design 32
2.2.4 Models for Pricing Design 34
2.2.5 Models for Mixed Design 37
2.3 Algorithms for Supply Design Models 37
2.3.1 Algorithms for the Discrete SDP 37
2.3.2 Algorithms for the Continuous SDP 40
Chapter 3 Transportation Supply Design Projects¢ñ 42
3.1 Traffic Intersections 42
3.1.1 Conflicts at an Intersection 42
3.1.2 Control of Intersection 43
3.2 Traffic Rotaries Engineering 48
3.2.1 Advantages and Disadvantages of Rotary 48
3.2.2 Guidelines for the Selection of Rotaries 49
3.2.3 Traffic Operations in a Rotary 50
3.2.4 Intersection Design 50
3.2.5 Capacity of Intersection 52
3.3 Parking Systems Design 54
3.3.1 Parking Studies 54
3.3.2 Parking Statistics 54
3.3.3 Parking Surveys 56
3.3.4 Ill Effects of Parking 56
3.3.5 Parking Requirements 57
3.3.6 On and off Street Parking 57
Chapter 4 Transportation Supply Design Projects¢ò 61
4.1 Road Marking projects 61
4.1.1 Longitudinal Markings 61
4.1.2 Transverse Markings 65
4.1.3 Object Marking 67
4.1.4 Special Marking 68
4.2 Traffic Signs Projects 70
4.2.1 Requirements of Traffic Control Devices 70
4.2.2 Communication Tools 71
4.2.3 Regulatory Signs 72
4.2.4 Warning Signs 74
4.2.5 Informative Signs 75
Chapter 5 Transportation Supply Design Projects ¢ó 76
5.1 Traffic Signal Design-I 76
5.1.1 Phase Design 77
5.1.2 Interval Design 80
5.1.3 Cycle Time 81
5.1.4 Effective Green Time 83
5.2 Traffic Signal Design-II 85
5.2.1 Green Splitting 85
5.2.2 Pedestrian Crossing Requirements 86
5.2.3 Performance Measures 86
5.3 Coordinated Signal Design 89
5.3.1 Factors Affecting Coordination 89
5.3.2 The Time-Space Diagram and Ideal Offsets 91
5.3.3 The Bandwidth Concept and Maximum Bandwidth 96
5.3.4 Forward and Reverse Progressions 99
Chapter 6 Systems Engineering for Intelligent Transportation Systems 103
6.1 ITS Project Implementation 103
6.1.1 Definition to ITS Project 103
6.1.2 ITS Technical Process 103
6.2 ITS Project Management Process 118
6.2.1 Project Planning 119
6.2.2 Project Monitoring and Control 122
6.2.3 Risk Management 126
6.2.4 Configuration Management 130
Chapter 7 Transportation Systems Engineering for Planning and Evaluation 132
7.1 Evaluation of Transportation System Projects 133
7.1.1 Identification of Relevant Impacts 134
7.1.2 Identification and Estimation of Impact Indicators 137
7.2 Methods for the Comparison of Alternative Projects 138
7.2.1 Benefit-Cost Analysis 139
7.2.2 Revenue-Cost Analysis 145
7.2.3 Multi-Criteria Analysis 146
References 157
1.1 Introduction to Systems Engineering 1
1.1.1 A Few Definitions 1
1.1.2 Systems Engineering Principles 2
1.1.3 The ¡°V¡± Systems Engineering Model 4
1.1.4 Value of Systems Engineering 6
1.2 Applying Systems Engineering 7
1.2.1 The Traditional Project Life Cycle and Systems Engineering 7
1.2.2 Applying Systems Engineering in Project 10
1.2.3 Applying Systems Engineering in Organization 11
1.3 Model Applications and Transportation Systems Engineering 15
1.3.1 Transportation Systems Design and the Decision-Making Process 15
1.3.2 Some Areas of Models Application 20
Chapter 2 Transportation Supply Design Models and Solving Algorithm 24
2.1 General Formulations of the Supply Design Problem 24
2.2 Applications of Supply Design Models 27
2.2.1 Models for Road Network Layout Design 28
2.2.2 Models for Road Network Capacity Design 30
2.2.3 Models for Transit Network Design 32
2.2.4 Models for Pricing Design 34
2.2.5 Models for Mixed Design 37
2.3 Algorithms for Supply Design Models 37
2.3.1 Algorithms for the Discrete SDP 37
2.3.2 Algorithms for the Continuous SDP 40
Chapter 3 Transportation Supply Design Projects¢ñ 42
3.1 Traffic Intersections 42
3.1.1 Conflicts at an Intersection 42
3.1.2 Control of Intersection 43
3.2 Traffic Rotaries Engineering 48
3.2.1 Advantages and Disadvantages of Rotary 48
3.2.2 Guidelines for the Selection of Rotaries 49
3.2.3 Traffic Operations in a Rotary 50
3.2.4 Intersection Design 50
3.2.5 Capacity of Intersection 52
3.3 Parking Systems Design 54
3.3.1 Parking Studies 54
3.3.2 Parking Statistics 54
3.3.3 Parking Surveys 56
3.3.4 Ill Effects of Parking 56
3.3.5 Parking Requirements 57
3.3.6 On and off Street Parking 57
Chapter 4 Transportation Supply Design Projects¢ò 61
4.1 Road Marking projects 61
4.1.1 Longitudinal Markings 61
4.1.2 Transverse Markings 65
4.1.3 Object Marking 67
4.1.4 Special Marking 68
4.2 Traffic Signs Projects 70
4.2.1 Requirements of Traffic Control Devices 70
4.2.2 Communication Tools 71
4.2.3 Regulatory Signs 72
4.2.4 Warning Signs 74
4.2.5 Informative Signs 75
Chapter 5 Transportation Supply Design Projects ¢ó 76
5.1 Traffic Signal Design-I 76
5.1.1 Phase Design 77
5.1.2 Interval Design 80
5.1.3 Cycle Time 81
5.1.4 Effective Green Time 83
5.2 Traffic Signal Design-II 85
5.2.1 Green Splitting 85
5.2.2 Pedestrian Crossing Requirements 86
5.2.3 Performance Measures 86
5.3 Coordinated Signal Design 89
5.3.1 Factors Affecting Coordination 89
5.3.2 The Time-Space Diagram and Ideal Offsets 91
5.3.3 The Bandwidth Concept and Maximum Bandwidth 96
5.3.4 Forward and Reverse Progressions 99
Chapter 6 Systems Engineering for Intelligent Transportation Systems 103
6.1 ITS Project Implementation 103
6.1.1 Definition to ITS Project 103
6.1.2 ITS Technical Process 103
6.2 ITS Project Management Process 118
6.2.1 Project Planning 119
6.2.2 Project Monitoring and Control 122
6.2.3 Risk Management 126
6.2.4 Configuration Management 130
Chapter 7 Transportation Systems Engineering for Planning and Evaluation 132
7.1 Evaluation of Transportation System Projects 133
7.1.1 Identification of Relevant Impacts 134
7.1.2 Identification and Estimation of Impact Indicators 137
7.2 Methods for the Comparison of Alternative Projects 138
7.2.1 Benefit-Cost Analysis 139
7.2.2 Revenue-Cost Analysis 145
7.2.3 Multi-Criteria Analysis 146
References 157
猜您喜欢