书籍详情
对称函数和麦克唐纳多项式:余代数结构与Kawanaka恒等式(英文)
作者:[澳] 罗宾·兰格
出版社:哈尔滨工业大学出版社
出版时间:2021-09-01
ISBN:9787560343839
定价:¥38.00
购买这本书可以去
内容简介
The ring of symmetric functions A, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on A by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood-Richardson numbers may be viewed as the structure constants for the co-product in the Schur basis. The first part of this thesis, inspired by the umbral calculus of Gian-Carlo Rota, is a study of the co-algebra maps of A, The Macdonald polynomials are a somewhat mysterious qt-deformation of the Schur functions. The second part of this thesis contains a proof a generating function identity for the Macdonald polynomials which was originally conjectured by Kawanaka.
作者简介
暂缺《对称函数和麦克唐纳多项式:余代数结构与Kawanaka恒等式(英文)》作者简介
目录
1.Symmetric functions of Littlewood-Richardson type
1.1.Symmetric Functions
1.1.1.Partitions
1.1.2.Monomial syrmnetric functions
1.1.3.Plethystic notation
1.1.4.Schur functions
1.2.The Umbral Calculus
1.2.1.Coalgebras
1.2.2.Sequences of Binomial Type
1.3.The Hall inner-product
1.3.1.Preliminaries
1.3.2.Column operators
1.3.3.Duality
1.4.Littlewood-Richardson Bases
1.4.1.Generalized complete symmetric functions
1.4.2.Umbraloperators
1.4.3.Column operators
1.4.4.Generalized elementary symmetric functions
1.5.Examples
2.A generating function identity for Macdonald polynomials
2.1.Macdonald Polynomials
2.1.1 .Notation
2.1.2.Operator definition
2.1.3.Characterization using the inner product
2.1.4.Arms and legs
2.1.5.Duality
2.1.6.Kawanaka conjecture
2.2.Resultants
2.2.1.Residue calculations
2.3.Pieri formula and recurrence
2.3.1.Arms and legs again
2.3.2.Pieri formula
2.3.3.Recurrence
2.4.The Proof
2.4.1.The Schur case
2.4.2.Step one
2.4.3.Step two
2.4.4.Step three
References
编辑手记
1.1.Symmetric Functions
1.1.1.Partitions
1.1.2.Monomial syrmnetric functions
1.1.3.Plethystic notation
1.1.4.Schur functions
1.2.The Umbral Calculus
1.2.1.Coalgebras
1.2.2.Sequences of Binomial Type
1.3.The Hall inner-product
1.3.1.Preliminaries
1.3.2.Column operators
1.3.3.Duality
1.4.Littlewood-Richardson Bases
1.4.1.Generalized complete symmetric functions
1.4.2.Umbraloperators
1.4.3.Column operators
1.4.4.Generalized elementary symmetric functions
1.5.Examples
2.A generating function identity for Macdonald polynomials
2.1.Macdonald Polynomials
2.1.1 .Notation
2.1.2.Operator definition
2.1.3.Characterization using the inner product
2.1.4.Arms and legs
2.1.5.Duality
2.1.6.Kawanaka conjecture
2.2.Resultants
2.2.1.Residue calculations
2.3.Pieri formula and recurrence
2.3.1.Arms and legs again
2.3.2.Pieri formula
2.3.3.Recurrence
2.4.The Proof
2.4.1.The Schur case
2.4.2.Step one
2.4.3.Step two
2.4.4.Step three
References
编辑手记
猜您喜欢