书籍详情
隐私计算
作者:陈凯,杨强 著
出版社:电子工业出版社
出版时间:2022-02-01
ISBN:9787121426414
定价:¥118.00
购买这本书可以去
内容简介
在大数据和人工智能时代,如何在享受新技术带来的便利性的同时保护自己的隐私,是一个重要的问题。《隐私计算》系统讲解了隐私计算的基础技术和实践案例,全书共有11 章,按层次划分为三部分。第一部分全面系统地阐述隐私加密计算技术,包括秘密共享、同态加密、不经意传输和混淆电路。第二部分介绍隐私保护计算技术,包括差分隐私、可信执行环境和联邦学习。第三部分介绍基于隐私计算技术构建的隐私计算平台和实践案例,隐私计算平台主要包括面向联邦学习的FATE 平台和加密数据库的CryptDB 系统等五个平台,以及隐私计算平台的效率问题和常见的加速策略;实践案例部分主要介绍包括金融营销与风控、广告计费、广告推荐、数据查询、医疗、语音识别及政务等领域的应用案例。此外,《隐私计算》还展望了隐私计算未来的研究和落地方向。在附录中介绍了当前新的中国数据保护法律概况。 《隐私计算》可供计算机科学、隐私保护、大数据和人工智能相关专业的学生,以及对隐私计算有兴趣的相关从业者阅读,也适合从事隐私保护相关研究的研究人员、法律法规制定者和政府监管部门阅读。
作者简介
陈 凯 香港科技大学计算机科学与工程系副教授、博导、研究生部主任,智能网络与系统实验室(iSING Lab)主任,香港科大-微信人工智能技术联合实验室(WHAT Lab)主任,香港人工智能与机器人学会(HKSAIR)执行副理事长,香港主题研究计划(Theme-based Reseach Scheme)首席科学家。主要研究方向包括数据中心网络、云计算、大数据和人工智能底层系统和基础架构。担任ACM SIGCOMM、USENIX NSDI、IEEE INFOCOM、IEEE/ACM Transactions on Networking、Big Data、Cloud Computing等国际会议和期刊的程序委员会委员和编委,亚太网络研讨会(APNet)的发起人和执行委员会主席。陈凯本科和硕士毕业于中国科学技术大学,获得中国科学院院长奖,博士毕业于美国西北大学。杨 强 加拿大工程院及加拿大皇家科学院两院院士,微众银行首席人工智能官,香港科技大学讲席教授,AAAI 2021大会主席,中国人工智能学会(CAAI)荣誉副理事长,香港人工智能与机器人学会(HKSAIR)理事长以及智能投研技术联盟(ITL)主席。他是AAAI/ACM/CAAI/IEEE/IAPR/AAAS Fellow,也是IEEE Transactions on Big Data和ACM Transactions on Intelligent Systems and Technology创始主编,以及多个国际人工智能和数据挖掘领域杂志编委。曾获2019年度“吴文俊人工智能科学技术奖”杰出贡献奖,2017年ACM SIGKDD杰出服务奖。杨强毕业于北京大学,于1989年在马里兰大学获得计算机博士学位,之后在加拿大滑铁卢大学和Simon Fraser大学任教,他的研究领域包括人工智能、数据挖掘和机器学习等。他曾任华为诺ya方舟实验室主任,第四范式公司联合创始人,香港科技大学计算机与工程系系主任以及国际人工智能联合会(IJCAI)理事会主席。领衔全球迁移学习和联邦学习研究及应用,最近的著作有《迁移学习》、《联邦学习》和《联邦学习实战》等。
目录
推荐序
前言
数学符号
第1 章隐私计算介绍/1
1.1 隐私计算的定义与背景/2
1.1.1 隐私计算的定义与分类/2
1.1.2 隐私计算的发展历程/6
1.2 隐私计算的技术实现/8
1.3 隐私计算平台与案例/10
1.4 隐私计算的挑战/10
第2 章秘密共享/13
2.1 问题模型及定义/15
2.1.1 秘密共享问题模型/15
2.1.2 秘密共享定义/16
2.2 原理与实现/19
2.2.1 秘密共享方案的发展/19
2.2.2 经典秘密共享方案/21
2.2.3 秘密共享方案的同态特性/26
2.3 优缺点分析/28
2.4 应用场景/28
2.4.1 秘密共享在横向联邦学习中的应用/28
2.4.2 秘密共享在纵向联邦学习中的应用/31
2.4.3 秘密共享在安全多方计算中的应用/32
第3 章同态加密/35
3.1 问题模型及定义/36
3.2 原理与实现/39
3.2.1 群/40
3.2.2 环/41
3.2.3 格/41
3.2.4 部分同态加密/42
3.2.5 近似同态加密/44
3.2.6 全同态加密/45
3.2.7 层级同态加密/48
3.3 优缺点分析/50
3.3.1 同态加密的优点/50
3.3.2 同态加密的缺点/51
3.4 应用场景/52
3.4.1 密文检索/52
3.4.2 云机器学习服务/54
第4 章不经意传输/57
4.1 问题模型及定义/58
4.2 不经意传输的实现/58
4.2.1 基于公钥加密的不经意传输/58
4.2.2 不经意传输的扩展与优化/59
4.3 应用场景/61
第5 章混淆电路/63
5.1 问题模型及定义/64
5.2 混淆电路的实现与优化/65
5.2.1 使用不经意传输的简单实现/66
5.2.2 混淆电路计算与门电路/67
5.2.3 任意逻辑门和电路/67
5.2.4 主流的优化方案和代价分析/69
5.3 优缺点分析/71
5.4 应用场景/72
5.4.1 与其他安全多方计算协议混合使用/72
5.4.2 混淆电路实现一般的安全多方计算/73
第6 章差分隐私/75
6.1 问题模型及定义/7
6.1.1 随机回答的问题模型及定义/77
6.1.2 差分隐私的问题模型及定义/78
6.2 实现方法及性质/83
6.2.1 离散值域:随机回答/83
6.2.2 连续值域:拉普拉斯噪声法和高斯噪声法/83
6.2.3 差分隐私的性质/86
6.3 优缺点分析/88
6.4 应用场景/90
6.4.1 传统数据分析/90
6.4.2 机器学习/92
第7 章可信执行环境/97
7.1 可信执行环境简介/98
7.2 原理与实现/99
7.2.1 ARM TrustZone/99
7.2.2 Intel SGX/101
7.2.3 AMD SEV/102
7.2.4 AEGIS/104
7.2.5 TPM/104
7.3 优缺点分析/104
7.4 应用场景/106
7.4.1 移动终端/106
7.4.2 云计算/108
7.4.3 区块链/110
第8 章联邦学习/111
8.1 联邦学习的背景、定义与分类/112
8.1.1 联邦学习的背景/112
8.1.2 联邦学习的定义/113
8.1.3 联邦学习的分类/113
8.1.4 联邦学习的安全性/115
8.2 横向联邦学习/16
8.2.1 横向联邦学习架构、训练与推理/116
8.2.2 联邦平均算法/117
8.2.3 横向联邦学习的隐私安全性/118
8.3 纵向联邦学习/122
8.3.1 纵向联邦学习架构、训练与推理/122
8.3.2 纵向联邦线性回归/123
8.3.3 纵向联邦学习的隐私安全性/125
8.4 联邦迁移学习/125
8.4.1 迁移学习简介/126
8.4.2 联邦迁移学习算法训练和推理/126
8.4.3 联邦迁移学习的安全性/129
8.5 联邦学习的应用场景/129
8.5.1 自然语言处理/130
8.5.2 医疗/130
8.5.3 金融/131
8.6 联邦学习的未来展望/131
8.6.1 隐私与效率、性能的权衡/132
8.6.2 去中心化的联邦学习/132
第9 章隐私计算平台/135
9.1 隐私计算平台概述/136
9.2 FATE 安全计算平台/136
9.2.1 平台概述/136
9.2.2 FATE 中的隐私计算技术/138
9.2.3 平台工作流程/139
9.2.4 应用场景/141
9.3 CryptDB 加密数据库系统/142
9.3.1 系统概述/142
9.3.2 隐私计算技术在CryptDB 中的实现:基于SQL 感知的加密策略/144
9.3.3 基于密文的查询方法/145
9.3.4 应用场景/147
9.4 MesaTEE 安全计算平台Teaclave/148
9.4.1 飞桨深度学习平台与安全计算/148
9.4.2 PaddleFL 联邦学习框架/149
9.4.3 MesaTEE 平台概述/150
9.4.4 MesaTEE 底层可信执行环境/150
9.4.5 FaaS 服务/152
9.4.6 执行器MesaPy/153
9.4.7 应用场景——MesaTEE 与飞桨/154
9.5 Conclave 查询系统/155
9.5.1 系统概述/155
9.5.2 Conclave 隐私安全技术介绍/156
9.5.3 Conclave 查询编译/158
9.5.4 应用场景/161
9.6 PrivPy 隐私计算平台/161
9.6.1 PrivPy 平台概述/161
9.6.2 平台后端安全计算介绍/163
9.6.3 用户编程接口/165
9.6.4 应用场景/166
9.7 隐私计算平台效率问题和加速策略/166
9.7.1 隐私计算技术中的效率问题/167
9.7.2 异构加速隐私计算/168
9.7.3 网络优化解决数据传输问题/171
第10 章隐私计算案例解析/175
10.1 隐私计算在金融营销与风控中的应用/176
10.2 隐私计算在广告计费中的应用/182
10.3 隐私计算在广告推荐中的应用/185
10.4 隐私计算在数据查询中的应用/187
10.5 隐私计算在医疗领域的应用:基因研究/189
10.6 隐私计算在医疗领域的应用:医药研究/193
10.7 隐私计算在语音识别领域的应用/194
10.8 隐私计算在政务部门的应用/196
10.9 隐私计算在用户数据统计的应用/ 203
第11 章隐私计算未来展望/209
参考文献214
附录A 中国数据保护法律概况/233
A.1 《个人信息保护法》与数据保护/234
A.1.1 适用范围/234
A.1.2 个人信息处理原则/234
A.1.3 个人信息保护影响评估制度/235
A.1.4 禁止“大数据杀熟”的算法歧视/235
A.1.5 个人信息跨境提供规则/236
A.1.6 个人信息主体权利/236
A.2 《数据安全法》与数据保护/ 237
A.2.1 适用范围和域外效力/237
A.2.2 数据分类分级保护制度/237
A.2.3 数据安全保护义务/237
A.3 《网络安全法》与数据保护/ 238
前言
数学符号
第1 章隐私计算介绍/1
1.1 隐私计算的定义与背景/2
1.1.1 隐私计算的定义与分类/2
1.1.2 隐私计算的发展历程/6
1.2 隐私计算的技术实现/8
1.3 隐私计算平台与案例/10
1.4 隐私计算的挑战/10
第2 章秘密共享/13
2.1 问题模型及定义/15
2.1.1 秘密共享问题模型/15
2.1.2 秘密共享定义/16
2.2 原理与实现/19
2.2.1 秘密共享方案的发展/19
2.2.2 经典秘密共享方案/21
2.2.3 秘密共享方案的同态特性/26
2.3 优缺点分析/28
2.4 应用场景/28
2.4.1 秘密共享在横向联邦学习中的应用/28
2.4.2 秘密共享在纵向联邦学习中的应用/31
2.4.3 秘密共享在安全多方计算中的应用/32
第3 章同态加密/35
3.1 问题模型及定义/36
3.2 原理与实现/39
3.2.1 群/40
3.2.2 环/41
3.2.3 格/41
3.2.4 部分同态加密/42
3.2.5 近似同态加密/44
3.2.6 全同态加密/45
3.2.7 层级同态加密/48
3.3 优缺点分析/50
3.3.1 同态加密的优点/50
3.3.2 同态加密的缺点/51
3.4 应用场景/52
3.4.1 密文检索/52
3.4.2 云机器学习服务/54
第4 章不经意传输/57
4.1 问题模型及定义/58
4.2 不经意传输的实现/58
4.2.1 基于公钥加密的不经意传输/58
4.2.2 不经意传输的扩展与优化/59
4.3 应用场景/61
第5 章混淆电路/63
5.1 问题模型及定义/64
5.2 混淆电路的实现与优化/65
5.2.1 使用不经意传输的简单实现/66
5.2.2 混淆电路计算与门电路/67
5.2.3 任意逻辑门和电路/67
5.2.4 主流的优化方案和代价分析/69
5.3 优缺点分析/71
5.4 应用场景/72
5.4.1 与其他安全多方计算协议混合使用/72
5.4.2 混淆电路实现一般的安全多方计算/73
第6 章差分隐私/75
6.1 问题模型及定义/7
6.1.1 随机回答的问题模型及定义/77
6.1.2 差分隐私的问题模型及定义/78
6.2 实现方法及性质/83
6.2.1 离散值域:随机回答/83
6.2.2 连续值域:拉普拉斯噪声法和高斯噪声法/83
6.2.3 差分隐私的性质/86
6.3 优缺点分析/88
6.4 应用场景/90
6.4.1 传统数据分析/90
6.4.2 机器学习/92
第7 章可信执行环境/97
7.1 可信执行环境简介/98
7.2 原理与实现/99
7.2.1 ARM TrustZone/99
7.2.2 Intel SGX/101
7.2.3 AMD SEV/102
7.2.4 AEGIS/104
7.2.5 TPM/104
7.3 优缺点分析/104
7.4 应用场景/106
7.4.1 移动终端/106
7.4.2 云计算/108
7.4.3 区块链/110
第8 章联邦学习/111
8.1 联邦学习的背景、定义与分类/112
8.1.1 联邦学习的背景/112
8.1.2 联邦学习的定义/113
8.1.3 联邦学习的分类/113
8.1.4 联邦学习的安全性/115
8.2 横向联邦学习/16
8.2.1 横向联邦学习架构、训练与推理/116
8.2.2 联邦平均算法/117
8.2.3 横向联邦学习的隐私安全性/118
8.3 纵向联邦学习/122
8.3.1 纵向联邦学习架构、训练与推理/122
8.3.2 纵向联邦线性回归/123
8.3.3 纵向联邦学习的隐私安全性/125
8.4 联邦迁移学习/125
8.4.1 迁移学习简介/126
8.4.2 联邦迁移学习算法训练和推理/126
8.4.3 联邦迁移学习的安全性/129
8.5 联邦学习的应用场景/129
8.5.1 自然语言处理/130
8.5.2 医疗/130
8.5.3 金融/131
8.6 联邦学习的未来展望/131
8.6.1 隐私与效率、性能的权衡/132
8.6.2 去中心化的联邦学习/132
第9 章隐私计算平台/135
9.1 隐私计算平台概述/136
9.2 FATE 安全计算平台/136
9.2.1 平台概述/136
9.2.2 FATE 中的隐私计算技术/138
9.2.3 平台工作流程/139
9.2.4 应用场景/141
9.3 CryptDB 加密数据库系统/142
9.3.1 系统概述/142
9.3.2 隐私计算技术在CryptDB 中的实现:基于SQL 感知的加密策略/144
9.3.3 基于密文的查询方法/145
9.3.4 应用场景/147
9.4 MesaTEE 安全计算平台Teaclave/148
9.4.1 飞桨深度学习平台与安全计算/148
9.4.2 PaddleFL 联邦学习框架/149
9.4.3 MesaTEE 平台概述/150
9.4.4 MesaTEE 底层可信执行环境/150
9.4.5 FaaS 服务/152
9.4.6 执行器MesaPy/153
9.4.7 应用场景——MesaTEE 与飞桨/154
9.5 Conclave 查询系统/155
9.5.1 系统概述/155
9.5.2 Conclave 隐私安全技术介绍/156
9.5.3 Conclave 查询编译/158
9.5.4 应用场景/161
9.6 PrivPy 隐私计算平台/161
9.6.1 PrivPy 平台概述/161
9.6.2 平台后端安全计算介绍/163
9.6.3 用户编程接口/165
9.6.4 应用场景/166
9.7 隐私计算平台效率问题和加速策略/166
9.7.1 隐私计算技术中的效率问题/167
9.7.2 异构加速隐私计算/168
9.7.3 网络优化解决数据传输问题/171
第10 章隐私计算案例解析/175
10.1 隐私计算在金融营销与风控中的应用/176
10.2 隐私计算在广告计费中的应用/182
10.3 隐私计算在广告推荐中的应用/185
10.4 隐私计算在数据查询中的应用/187
10.5 隐私计算在医疗领域的应用:基因研究/189
10.6 隐私计算在医疗领域的应用:医药研究/193
10.7 隐私计算在语音识别领域的应用/194
10.8 隐私计算在政务部门的应用/196
10.9 隐私计算在用户数据统计的应用/ 203
第11 章隐私计算未来展望/209
参考文献214
附录A 中国数据保护法律概况/233
A.1 《个人信息保护法》与数据保护/234
A.1.1 适用范围/234
A.1.2 个人信息处理原则/234
A.1.3 个人信息保护影响评估制度/235
A.1.4 禁止“大数据杀熟”的算法歧视/235
A.1.5 个人信息跨境提供规则/236
A.1.6 个人信息主体权利/236
A.2 《数据安全法》与数据保护/ 237
A.2.1 适用范围和域外效力/237
A.2.2 数据分类分级保护制度/237
A.2.3 数据安全保护义务/237
A.3 《网络安全法》与数据保护/ 238
猜您喜欢