书籍详情
构件疲劳损伤非线性检测的理论、方法及应用
作者:毛汉领 著
出版社:科学出版社
出版时间:2021-11-01
ISBN:9787030688729
定价:¥158.00
购买这本书可以去
内容简介
《构件疲劳损伤非线性检测的理论、方法及应用》把构件疲劳损伤检测分为全局检测和局部检测两大类,充分利用非线性输出频率响应函数(NOFRF)既简单又能反映系统本质特性,采用锤击激励把构件疲劳损伤的非线性信息激励出来,用NOFRF表征疲劳损伤信息,灵活地构建损伤检测指标,实现构件疲劳损伤的全局检测;应用超声非线性效应,分析超声非线性特征参数、材料结构变化和服役损伤之间的关联,利用超声非线性参数对疲劳损伤的表征,实现构件疲劳损伤的局部检测;分别以柴油发动机连杆、装载机变速箱箱体、列车轮对、电力支柱绝缘子、压榨机齿轮等构件为对象进行了疲劳损伤检测实验,取得了较满意的效果。《构件疲劳损伤非线性检测的理论、方法及应用》概念清楚,推导明晰,论述简明;检测理论和方法表述并重,辅以应用实例,以求构建通往工程应用的途径。
作者简介
暂缺《构件疲劳损伤非线性检测的理论、方法及应用》作者简介
目录
目录
序
前言
第1章 绪论 1
1.1 背景和意义 1
1.2 疲劳损伤的认识历程 2
1.3 疲劳损伤检测技术的发展 5
1.3.1 局部检测技术 5
1.3.2 全局检测技术 8
1.3.3 声发射的损伤检测 17
1.4 问题与任务 18
参考文献 22
第2章 锤击激励非线性检测理论 30
2.1 引言 30
2.2 非线性理论模型 31
2.3 基于非线性模型的损伤检测理论 35
2.3.1 基于NOFRF的损伤检测 35
2.3.2 NOFRF的辨识方法 37
2.3.3 非线性特征指标的构建 38
2.4 脉冲锤击激励试验方法 40
2.4.1 振动激励方式的选择 40
2.4.2 模态分析辅助选择激励点和测量点 42
2.4.3 测试对象的柔性支承 44
2.5 锤击激励输入的Volterra模型辨识 45
2.5.1 NOFRF理论基础 46
2.5.2 NOFRF辨识分析 47
2.5.3 矩形脉冲激励下NOFRF的辨识 50
2.6 锤击激励下NOFRF四种估计方法 52
2.6.1 锤击激励下基于输入输出直接估计NOFRF 53
2.6.2 基于NARMAX模型与谐波信号估计NOFRF 54
2.6.3 基于改进的NARMAX模型与谐波信号估计NOFRF 56
2.6.4 基于NARMAX模型与矩形脉冲估计NOFRF 59
2.6.5 数值仿真和锤击实验 61
2.7 锤击激励下SIMO的NOFRF的估计 69
2.7.1 MIMO系统NOFRF理论基础 70
2.7.2 SIMO情形NOFRF的估计 73
2.7.3 SIMO数值仿真分析 74
2.8 本章小结 78
参考文献 79
第3章 构建NOFRF损伤检测指标 84
3.1 引言 84
3.2 NOFRF熵检测指标 85
3.2.1 信息熵及其检测原理 85
3.2.2 NOFRF熵检测指标构建 87
3.2.3 NOFRF熵检测指标的检测验证 89
3.3 NOFRF复杂度熵检测指标 90
3.3.1 复杂度概念及检测原理 90
3.3.2 NOFRF频域复杂度熵检测指标构建 91
3.3.3 NOFRF复杂度熵检测指标的仿真验证 92
3.4 NOFRF散度检测指标 95
3.4.1 散度概念及检测原理 95
3.4.2 散度检测指标构建 97
3.4.3 散度检测指标的仿真验证 102
3.5 NOFRF检测指标的检测分析 106
3.5.1 由NOFRF构建的检测指标 106
3.5.2 NOFRF检测实验分析 109
3.6 本章小结 114
参考文献 114
第4章 柴油发动机连杆的疲劳损伤检测 118
4.1 引言 118
4.2 连杆体的模态分析 118
4.2.1 连杆体建模 119
4.2.2 连杆体的模态分析 120
4.3 连杆体的固有频率测试 121
4.3.1 连杆体锤击激励测试方法 121
4.3.2 连杆体声振扫频实验测试 123
4.3.3 两种测试方法的对比 124
4.3.4 旧连杆体固有频率测试分析 126
4.4 柴油机旧连杆非线性检测研究 129
4.4.1 锤击激励连杆的NOFRF估计 129
4.4.2 连杆的NOFRF熵指标NE检测 131
4.4.3 连杆的NOFRF频谱复杂度熵IFEn检测 133
4.4.4 连杆的NOFRF散度检测 135
4.5 本章小结 136
参考文献 136
第5章 装载机变速箱箱体的疲劳损伤检测 138
5.1 引言 138
5.2 变速箱箱体检测的锤击实验 139
5.2.1 变速箱箱体模态分析 139
5.2.2 变速箱箱体锤击实验的支承 143
5.2.3 变速箱箱体检测的锤击实验 145
5.3 变速箱箱体的NOFRF检测 147
5.3.1 NOFRF的Fe和NE指标检测 148
5.3.2 NOFRF综合检测指标 154
5.3.3 变速箱箱体损伤区域颜色标识 155
5.4 本章小结 157
参考文献 157
第6章 列车轮对的疲劳损伤检测 159
6.1 引言 159
6.2 列车轮对故障检测研究现状 159
6.3 NOFRF-KL损伤检测指标 161
6.4 列车轮对的有限元分析 168
6.4.1 列车轮对三维建模 168
6.4.2 列车轮对模态分析 169
6.4.3 列车轮对受力分析 171
6.5 轮对锤击激励实验 174
6.5.1 锤击试验方案 174
6.5.2 锤击实验规范及数据预处理 176
6.6 轮对损伤评估 176
6.6.1 轮对的锤击检测评估 177
6.6.2 评估结果讨论 186
6.7 本章小结 187
参考文献 187
第7章 电力支柱绝缘子的损伤检测 190
7.1 引言 190
7.2 绝缘子常规检测方法 191
7.2.1 出厂前绝缘子的检测 191
7.2.2 挂网运行后绝缘子的检测 191
7.3 支柱瓷绝缘子的有限元分析 194
7.3.1 有限元动力学分析基本原理 194
7.3.2 支柱瓷绝缘子建模 196
7.3.3 支柱瓷绝缘子模态分析 197
7.3.4 支柱瓷绝缘子的谐波响应分析 202
7.4 支柱瓷绝缘子损伤检测仿真研究 207
7.4.1 时间历程分析基础 207
7.4.2 支柱瓷绝缘子常见损伤形式 208
7.4.3 呼吸裂纹模型设置 209
7.4.4 谐波检测法仿真分析 210
7.4.5 NOFRF检测法仿真分析 214
7.4.6 呼吸裂纹参数检测敏感性分析 216
7.5 支柱瓷绝缘子损伤检测实验研究 218
7.5.1 声振谐波实验检测 218
7.5.2 NOFRF实验检测 221
7.6 本章小结 223
参考文献 223
第8章 超声非线性检测的理论基础 226
8.1 引言 226
8.2 超声非线性检测的基础 226
8.2.1 超声非线性效应 226
8.2.2 超声非线性技术的理论研究 228
8.2.3 超声非线性技术的实验研究 229
8.3 超声非线性信号的混沌特性 234
8.3.1 混沌与分形的基本概念 234
8.3.2 混沌分形特征量及估算方法 235
8.3.3 超声非线性信号的混沌特性分析 237
8.4 超声非线性信号的杜芬检测 241
8.4.1 杜芬振子的动力学特性分析 241
8.4.2 Duffing振子检测系统构建 244
8.4.3 Duffing振子检测检测结果 248
8.5 本章小结 254
参考文献 255
第9章 超声非线性检测应力 262
9.1 引言 262
9.2 金属零部件应力状态的超声非线性表征 263
9.2.1 超声波检测残余应力的基本原理 263
9.2.2 LCR波非线性检测应力的机理 266
9.2.3 金属试件应力状态的超声非线性系数表征 267
9.3 金属零部件应力状态的检测 276
9.3.1 金属试件应力的检测原理 276
9.3.2 x方向上应力估算 277
9.3.3 不同方向(x1、x2)的应力估算 282
9.4 本章小结 284
参考文献 285
第10章 疲劳损伤的超声非线性检测 287
10.1 引言 287
10.2 金属试件疲劳损伤的超声非线性检测机理 287
10.2.1 混频技术的非线性理论 288
10.2.2 共线混频技术预测金属试件疲劳寿命的机理 289
10.2.3 疲劳断口形态分析 296
10.3 疲劳损伤的非共线混频检测方法 298
10.3.1 非共线混频检测原理 299
10.3.2 疲劳损伤检测分析 303
10.3.3 不可见疲劳裂纹的定位 306
10.3.4 不可见疲劳裂纹的长度测量 309
10.4 本章小结 311
参考文献 312
第11章 压榨机齿轮早期疲劳损伤的超声非线性检测 313
11.1 引言 313
11.2 压榨机齿轮的无损检测方法 314
11.3 碳素结构钢的特性分析 315
11.4 压榨机齿轮的非线性特性分析 319
11.4.1 实际齿轮的检测实验 320
11.4.2 齿轮根部的非线性特性分析 323
11.4.3 齿中部的非线性特性分析 325
11.5 本章小结 326
参考文献 327
第12章 总结 328
12.1 检测理论和方法 328
12.1.1 基于NOFRF全局检测 328
12.1.2 基于超声非线性局部检测 329
12.1.3 检测试验效果 331
12.2 存在问题和不足 332
后记
序
前言
第1章 绪论 1
1.1 背景和意义 1
1.2 疲劳损伤的认识历程 2
1.3 疲劳损伤检测技术的发展 5
1.3.1 局部检测技术 5
1.3.2 全局检测技术 8
1.3.3 声发射的损伤检测 17
1.4 问题与任务 18
参考文献 22
第2章 锤击激励非线性检测理论 30
2.1 引言 30
2.2 非线性理论模型 31
2.3 基于非线性模型的损伤检测理论 35
2.3.1 基于NOFRF的损伤检测 35
2.3.2 NOFRF的辨识方法 37
2.3.3 非线性特征指标的构建 38
2.4 脉冲锤击激励试验方法 40
2.4.1 振动激励方式的选择 40
2.4.2 模态分析辅助选择激励点和测量点 42
2.4.3 测试对象的柔性支承 44
2.5 锤击激励输入的Volterra模型辨识 45
2.5.1 NOFRF理论基础 46
2.5.2 NOFRF辨识分析 47
2.5.3 矩形脉冲激励下NOFRF的辨识 50
2.6 锤击激励下NOFRF四种估计方法 52
2.6.1 锤击激励下基于输入输出直接估计NOFRF 53
2.6.2 基于NARMAX模型与谐波信号估计NOFRF 54
2.6.3 基于改进的NARMAX模型与谐波信号估计NOFRF 56
2.6.4 基于NARMAX模型与矩形脉冲估计NOFRF 59
2.6.5 数值仿真和锤击实验 61
2.7 锤击激励下SIMO的NOFRF的估计 69
2.7.1 MIMO系统NOFRF理论基础 70
2.7.2 SIMO情形NOFRF的估计 73
2.7.3 SIMO数值仿真分析 74
2.8 本章小结 78
参考文献 79
第3章 构建NOFRF损伤检测指标 84
3.1 引言 84
3.2 NOFRF熵检测指标 85
3.2.1 信息熵及其检测原理 85
3.2.2 NOFRF熵检测指标构建 87
3.2.3 NOFRF熵检测指标的检测验证 89
3.3 NOFRF复杂度熵检测指标 90
3.3.1 复杂度概念及检测原理 90
3.3.2 NOFRF频域复杂度熵检测指标构建 91
3.3.3 NOFRF复杂度熵检测指标的仿真验证 92
3.4 NOFRF散度检测指标 95
3.4.1 散度概念及检测原理 95
3.4.2 散度检测指标构建 97
3.4.3 散度检测指标的仿真验证 102
3.5 NOFRF检测指标的检测分析 106
3.5.1 由NOFRF构建的检测指标 106
3.5.2 NOFRF检测实验分析 109
3.6 本章小结 114
参考文献 114
第4章 柴油发动机连杆的疲劳损伤检测 118
4.1 引言 118
4.2 连杆体的模态分析 118
4.2.1 连杆体建模 119
4.2.2 连杆体的模态分析 120
4.3 连杆体的固有频率测试 121
4.3.1 连杆体锤击激励测试方法 121
4.3.2 连杆体声振扫频实验测试 123
4.3.3 两种测试方法的对比 124
4.3.4 旧连杆体固有频率测试分析 126
4.4 柴油机旧连杆非线性检测研究 129
4.4.1 锤击激励连杆的NOFRF估计 129
4.4.2 连杆的NOFRF熵指标NE检测 131
4.4.3 连杆的NOFRF频谱复杂度熵IFEn检测 133
4.4.4 连杆的NOFRF散度检测 135
4.5 本章小结 136
参考文献 136
第5章 装载机变速箱箱体的疲劳损伤检测 138
5.1 引言 138
5.2 变速箱箱体检测的锤击实验 139
5.2.1 变速箱箱体模态分析 139
5.2.2 变速箱箱体锤击实验的支承 143
5.2.3 变速箱箱体检测的锤击实验 145
5.3 变速箱箱体的NOFRF检测 147
5.3.1 NOFRF的Fe和NE指标检测 148
5.3.2 NOFRF综合检测指标 154
5.3.3 变速箱箱体损伤区域颜色标识 155
5.4 本章小结 157
参考文献 157
第6章 列车轮对的疲劳损伤检测 159
6.1 引言 159
6.2 列车轮对故障检测研究现状 159
6.3 NOFRF-KL损伤检测指标 161
6.4 列车轮对的有限元分析 168
6.4.1 列车轮对三维建模 168
6.4.2 列车轮对模态分析 169
6.4.3 列车轮对受力分析 171
6.5 轮对锤击激励实验 174
6.5.1 锤击试验方案 174
6.5.2 锤击实验规范及数据预处理 176
6.6 轮对损伤评估 176
6.6.1 轮对的锤击检测评估 177
6.6.2 评估结果讨论 186
6.7 本章小结 187
参考文献 187
第7章 电力支柱绝缘子的损伤检测 190
7.1 引言 190
7.2 绝缘子常规检测方法 191
7.2.1 出厂前绝缘子的检测 191
7.2.2 挂网运行后绝缘子的检测 191
7.3 支柱瓷绝缘子的有限元分析 194
7.3.1 有限元动力学分析基本原理 194
7.3.2 支柱瓷绝缘子建模 196
7.3.3 支柱瓷绝缘子模态分析 197
7.3.4 支柱瓷绝缘子的谐波响应分析 202
7.4 支柱瓷绝缘子损伤检测仿真研究 207
7.4.1 时间历程分析基础 207
7.4.2 支柱瓷绝缘子常见损伤形式 208
7.4.3 呼吸裂纹模型设置 209
7.4.4 谐波检测法仿真分析 210
7.4.5 NOFRF检测法仿真分析 214
7.4.6 呼吸裂纹参数检测敏感性分析 216
7.5 支柱瓷绝缘子损伤检测实验研究 218
7.5.1 声振谐波实验检测 218
7.5.2 NOFRF实验检测 221
7.6 本章小结 223
参考文献 223
第8章 超声非线性检测的理论基础 226
8.1 引言 226
8.2 超声非线性检测的基础 226
8.2.1 超声非线性效应 226
8.2.2 超声非线性技术的理论研究 228
8.2.3 超声非线性技术的实验研究 229
8.3 超声非线性信号的混沌特性 234
8.3.1 混沌与分形的基本概念 234
8.3.2 混沌分形特征量及估算方法 235
8.3.3 超声非线性信号的混沌特性分析 237
8.4 超声非线性信号的杜芬检测 241
8.4.1 杜芬振子的动力学特性分析 241
8.4.2 Duffing振子检测系统构建 244
8.4.3 Duffing振子检测检测结果 248
8.5 本章小结 254
参考文献 255
第9章 超声非线性检测应力 262
9.1 引言 262
9.2 金属零部件应力状态的超声非线性表征 263
9.2.1 超声波检测残余应力的基本原理 263
9.2.2 LCR波非线性检测应力的机理 266
9.2.3 金属试件应力状态的超声非线性系数表征 267
9.3 金属零部件应力状态的检测 276
9.3.1 金属试件应力的检测原理 276
9.3.2 x方向上应力估算 277
9.3.3 不同方向(x1、x2)的应力估算 282
9.4 本章小结 284
参考文献 285
第10章 疲劳损伤的超声非线性检测 287
10.1 引言 287
10.2 金属试件疲劳损伤的超声非线性检测机理 287
10.2.1 混频技术的非线性理论 288
10.2.2 共线混频技术预测金属试件疲劳寿命的机理 289
10.2.3 疲劳断口形态分析 296
10.3 疲劳损伤的非共线混频检测方法 298
10.3.1 非共线混频检测原理 299
10.3.2 疲劳损伤检测分析 303
10.3.3 不可见疲劳裂纹的定位 306
10.3.4 不可见疲劳裂纹的长度测量 309
10.4 本章小结 311
参考文献 312
第11章 压榨机齿轮早期疲劳损伤的超声非线性检测 313
11.1 引言 313
11.2 压榨机齿轮的无损检测方法 314
11.3 碳素结构钢的特性分析 315
11.4 压榨机齿轮的非线性特性分析 319
11.4.1 实际齿轮的检测实验 320
11.4.2 齿轮根部的非线性特性分析 323
11.4.3 齿中部的非线性特性分析 325
11.5 本章小结 326
参考文献 327
第12章 总结 328
12.1 检测理论和方法 328
12.1.1 基于NOFRF全局检测 328
12.1.2 基于超声非线性局部检测 329
12.1.3 检测试验效果 331
12.2 存在问题和不足 332
后记
猜您喜欢