书籍详情
从光子到神经元:光、成像和视觉
作者:[美] 菲利普·纳尔逊(Philip Nelson) 著,舒咬根,黎明 译
出版社:科学出版社
出版时间:2021-09-01
ISBN:9787030696397
定价:¥248.00
购买这本书可以去
内容简介
《从光子到神经元——光、成像和视觉》从光量子这一基本概念入手,全面介绍了当前生命科学中的各种光生物现象(如光合作用、结构色、视觉等)和重要光学技术(如荧光共振能量转移、多光子成像、光遗传学等),尤其重点介绍了色觉、单光子视觉、视信号转导等不同层次、不同方面视觉过程的光物理特征。《从光子到神经元——光、成像和视觉》主体部分注重定性论述,辅以简单定量计算,使一般读者都容易领会基本物理图像;《从光子到神经元——光、成像和视觉》进阶部分则对光量子的物理理论给予了必要介绍,供具备较好数学基础、希望对光的本性有更深刻了解的读者参考。本书取材广泛、内容新颖,论述生动有趣又不失严谨性,可作为生物物理学专业的教学参考书,同时也可作为物理学、生物学、眼视光学等其他领域读者了解物理学和生物学交叉深度和广度的普及读物。
作者简介
原作者简介: 菲利普·纳尔逊(Philip Nelson)是宾夕法尼亚大学教授,获得了多项奖项,包括丹尼斯M.德图尔克教学创新奖(宾夕法尼亚大学)。生物物理学会艾米丽·格雷奖,“对生物物理教学、开发创新教育材料和培养特别有利于生物物理教育的环境做出了深远而重大的贡献”。美国物理学会会员,“利用几何和拓扑方法对理解软生物材料、量子场和超弦做出的贡献。爱尔兰共和军艾布拉姆斯大学本科教学优秀纪念奖 (宾夕法尼亚大学)。译者简介: 舒咬根 研究员,任职于中国科学院大学温州研究院。长期从事生物分子马达等物理生物学课题的研究以及生物信息快速检测技术的开发;发表论文50余篇,出席国际会议并作口头报告十余次。参与翻译了《生命系统的物理建模》(上海科学技术出版社,2018年)、《细胞的物理生物学》(科学出版社,2012年)和《生物物理学:能量、信息、生命》(上海科学技术出版社,2006年)等物理生物学教材。 黎明 教授,任职于中国科学院大学物理学院。长期从事物理生物学的科研与教学工作,主要研究方向是生物分子机器相关的理论与计算。曾参与翻译物理生物学教材《生命系统的物理建模》(上海科学技术出版社,2018年)、《生物物理学:能量、信息、生命》(上海科学技术出版社,第一版2006年,修订版2014年)以及软物质科普读物《软物质:构筑梦幻的材料》(上海科技教育出版社,2013年)。
目录
目录
作者序
译者序
网页资源
致学生
致指导教师
前言:预备知识 1
0.1 导读:不确定性 1
0.2 离散概率分布 2
0.2.1 概率分布展示了我们对不确定性的认知 2
0.2.2 条件概率可以量化事件之间的相关程度 4
0.2.3 随机变量可以由其期望和方差来部分描述 4
0.2.4 联合分布 6
0.2.5 离散分布举例 7
0.3 量纲分析 10
0.4 连续概率分布 10
0.4.1 概率密度函数 10
0.4.2 连续分布举例 12
0.5 概率分布的其他性质和运算 15
0.5.1 概率密度函数的变换 15
0.5.2 大量独立同分布随机变量的样本均值的方差小于任一单个变量的方差 16
0.5.3 计数数据呈现典型的泊松分布 16
0.5.4 两噪声之差的相对标准偏差比单个噪声的更大 17
0.5.5 随机变量之和的概率分布是两个分布的卷积 17
0.6 热随机性 18
总结 18
关键公式 18
延伸阅读 19
习题 20
I 光的多面性
第1章 光是什么 25
1.1 导读:光子 25
1.2 1905年前对光的认知 26
1.2.1 光的基本现象 27
1.2.2 光在很多情况下表现出波动行为 27
1.3 光是颗粒状的 28
1.3.1 光的颗粒特征在极低强度下*明显 29
1.3.2 光电效应 32
1.3.3 爱因斯坦的观点 35
1.3.4 生物学中的光诱导现象定性支持爱因斯坦关系 37
1.4 背景知识:泊松过程 37
1.4.1 泊松过程可以定义为伯努利重复试验的连续时间极限 38
1.4.2 固定时间间隔内的尖脉冲计数服从泊松分布 38
1.4.3 等待时间服从指数分布 39
1.5 光的新物理模型 39
1.5.1 光假说,第一部分 39
1.5.2 光谱可视为某个概率密度分布乘上总速率 40
1.5.3 光可以从单个分子中击出电子从而引发光化学反应 41
1.6 光子吸收可能导致荧光或光致异构化 42
1.6.1 电子态假说 42
1.6.2 原子具有尖锐的谱线 43
1.6.3 荧光分子 44
1.6.4 分子的光致异构化 47
1.7 透明介质不会被光照改变,但会降低光速 49
总结 49
关键公式 50
延伸阅读 51
习题 61
第2章 光子和生命 63
2.1 导读:观察和操控 63
2.2 光致DNA损伤 63
2.3 荧光是观察细胞内部的手段之一 65
2.3.1 荧光可用来辨别术中的健康与病灶组织 65
2.3.2 荧光显微镜可以降低背景噪声,并特异性地显示目标 67
2.4 背景知识:膜电位 69
2.4.1 离子运动导致的电流 69
2.4.2 跨膜离子失衡可以产生膜电位 69
2.4.3 离子泵维持跨膜静息电位 70
2.4.4 离子通道调节膜电位以实现神经信号转导 70
2.4.5 动作电位可以长距离传输信息 70
2.4.6 动作电位的产生和利用 72
2.4.7 关于突触传输的更多说明 73
2.5 光控遗传修饰技术 75
2.5.1 大脑很难研究 75
2.5.2 光敏通道蛋白可受光控使神经元去极化 75
2.5.3 嗜盐菌视紫红质可受光控使神经元超极化 77
2.5.4 其他方法 78
2.6 荧光报告蛋白可以实时反映细胞状态 78
2.6.1 电压敏感型荧光报告蛋白 78
2.6.2 劈裂的荧光蛋白以及基因改造的钙离子报告蛋白 80
2.7 双光子激发可以对活体组织内部成像 82
2.7.1 厚样品成像问题 82
2.7.2 双光子激发对光强度敏感 83
2.7.3 多光子显微镜可以激发样本的特定体积元 84
2.8 荧光共振能量转移 86
2.8.1 如何判断两个分子何时彼此接近 86
2.8.2 FRET的物理模型 89
2.8.3 某些形式的生物发光也涉及FRET 91
2.8.4 FRET可用作光谱“标尺”91
2.8.5 FRET在DNA弯曲柔韧性研究中的应用 93
2.8.6 基于FRET的报告蛋白 95
2.9 光合作用回顾 96
2.9.1 光合作用非常重要 97
2.9.2 两个定量谜题促进了我们对光合作用的理解 97
2.9.3 共振能量转移解决了这两个谜题 100
总结 102
关键公式 102
延伸阅读 103
习题 111
第3章 色觉 115
3.1 导读:第五维度 115
3.2 色觉提升进化适应度 116
3.3 牛顿的颜色实验 116
3.4 背景知识:泊松过程的更多性质 118
3.4.1 稀释特性 119
3.4.2 合并特性 119
3.4.3 上述特性对光的重要性 120
3.5 合并两束光相当于光谱加和 120
3.6 色彩的心理学 121
3.6.1 红(R)加绿(G)看起来像黄色(Y) 121
3.6.2 颜色辨别是多对一的 122
3.6.3 感知匹配遵循某些定量、可重复和背景无关的规则 122
3.7 选择性吸收导致的颜色 125
3.7.1 反射和透射光谱 125
3.7.2 减色法 125
3.8 色觉的物理建模 126
3.8.1 色匹配函数的难题 126
3.8.2 眼睛中的相关湿件 128
3.8.3 三色模型 129
3.8.4 三色模型解释了为什么R+G~Y 131
3.8.5 我们的眼睛将光谱投射到 3D矢量空间 132
3.8.6 色匹配的力学类比 133
3.8.7 力学类比和色觉之间的联系 135
3.8.8 与实验观察到的色匹配函数进行定量比较 135
3.9 为什么天空不是紫罗兰 137
3.10 视锥细胞马赛克图案的直接成像 138
总结 139
关键公式 139
延伸阅读 140
习题 150
第4章 光子如何知道往哪走 153
4.1 导读:概率幅 153
4.2 重要现象 154
4.3 概率幅 158
4.3.1 调和光的粒子性和波动性需要引入一个新的物理量 158
4.4 背景知识:引入复数能简化计算 160
4.5 光假说,第二部分 162
4.6 干涉现象 164
4.6.1 光假说解释双缝干涉 164
4.6.2 牛顿环阐明了三维装置的干涉 166
4.6.3 光假说的反对意见 168
4.7 稳相原理 169
4.7.1 菲涅耳积分阐明稳相原理 169
4.7.2 计算概率幅需要对光子所有可能路径求和 172
4.7.3 单个大光圈的衍射 173
4.7.4 调和光的粒子性和波动性 177
总结 178
关键公式 178
延伸阅读 179
习题 185
第5章 光学现象与生命 189
5.1 导读:分类和定向 189
5.2 昆虫、鸟类和海洋生物的结构色 189
5.2.1 一些动物使用透明材料的纳米结构产生颜色 190
5.2.2 光假说的扩展版本可描述界面处的反射和透射 192
5.2.3 单个薄透明层的反射与波长的弱依赖关系 193
5.2.4 多层薄透明介质的堆叠会产生光学带隙 195
5.2.5 海洋生物的结构色 197
5.3 几何光学 199
5.3.1 反射定律是稳相原理的结果 199
5.3.2 透射和反射光栅通过调制光子路径而产生非几何光学行为 200
5.3.3 折射定律是稳相原理应用于分段均匀介质的结果 201
5.3.4 全内反射为荧光显微镜提供了另一种增强信噪比的手段 203
5.3.5 折射通常与波长有关 205
总结 206
关键公式 206
延伸阅读 207
习题 209
II 人类与超人类视觉
第6章 直接成像 217
6.1 导读:既明亮又清晰的图像 217
6.2 无透镜成像 217
6.2.1 阴影成像 217
6.2.2 小孔成像足以满足某些动物的需求 218
6.3 加入透镜可得到既明亮又清晰的图像 219
6.3.1 聚焦准则将物距和像距与透镜形状关联起来 220
6.3.2 更一般的方法 224
6.3.3 完整像的形成 225
6.3.4 像差会在近轴极限之外降低成像质量 226
6.4 脊椎动物眼睛 226
6.4.1 空气-水界面的成像 228
6.4.2 复合透镜系统提升了聚焦能力 229
6.4.3 晶状体形变调焦 231
6.5 光学显微镜及其相关仪器 232
6.5.1“光线”是几何光学中很有用的理想化概念 232
6.5.2 实像和虚像 233
6.5.3 球差 234
6.5.4 色散产生色差 235
6.5.5 共聚焦显微镜可抑制失焦的背景光 236
6.6 达尔文困境 238
6.7 背景知识:角度和角面积 239
6.7.1 角度 239
6.7.2 角面积 240
6.8 衍射极限 240
6.8.1 完美透镜也不能完美聚焦光线 241
6.8.2 三维情况:瑞利判据 242
6.8.3 动物眼睛感光细胞的尺寸与衍射极限相匹配 244
总结 244
关键公式 245
延伸阅读 246
习题 247
第7章 基于统计推断的成像技术 256
7.1 导读:信息 256
7.2 背景:关于统计推断 257
7.2.1 贝叶斯公式可用于更新概率估计 257
7.2.2 基于均匀先验分布的推断相当于*大化似然函数 258
7.2.3 分布中心的推断 258
7.2.4 参数估计及置信区间 259
7.2.5 对数据分区会减少其信息量 259
7.3 单荧光基团的定位 260
7.3.1 定位可视为推断问题 260
7.3.2 建立概率模型 261
7.3.3 成像数据的*大似然分析 262
7.3.4 分子马达步进 264
7.4 定位显微镜 265
7.5 散焦定向成像 267
总结 269
关键公式 270
延伸阅读 270
习题 276
第8章 X射线衍射成像 281
8.1 导读:反演 281
8.2 原子分辨率的挑战 282
8.3 衍射图 283
8.3.1 周期性狭缝阵列产生衍射条纹 283
8.3.2 拓展到X射线晶体学 285
8.3.3 具有子结构的狭缝阵列的衍射图案可由形状因子调制 286
8.3.4 二维“晶体”产生二维衍射图 287
8.3.5 三维“晶体”也能用类似方法分析 288
8.4 DNA的衍射图案编码了其双螺旋特征 289
8.4.1 从衍射图可获知DNA螺距、碱基对间距、螺旋错位和螺旋直径 289
8.4.2 尺寸参数的精确测定解开了DNA结构和功能的难题 291
总
作者序
译者序
网页资源
致学生
致指导教师
前言:预备知识 1
0.1 导读:不确定性 1
0.2 离散概率分布 2
0.2.1 概率分布展示了我们对不确定性的认知 2
0.2.2 条件概率可以量化事件之间的相关程度 4
0.2.3 随机变量可以由其期望和方差来部分描述 4
0.2.4 联合分布 6
0.2.5 离散分布举例 7
0.3 量纲分析 10
0.4 连续概率分布 10
0.4.1 概率密度函数 10
0.4.2 连续分布举例 12
0.5 概率分布的其他性质和运算 15
0.5.1 概率密度函数的变换 15
0.5.2 大量独立同分布随机变量的样本均值的方差小于任一单个变量的方差 16
0.5.3 计数数据呈现典型的泊松分布 16
0.5.4 两噪声之差的相对标准偏差比单个噪声的更大 17
0.5.5 随机变量之和的概率分布是两个分布的卷积 17
0.6 热随机性 18
总结 18
关键公式 18
延伸阅读 19
习题 20
I 光的多面性
第1章 光是什么 25
1.1 导读:光子 25
1.2 1905年前对光的认知 26
1.2.1 光的基本现象 27
1.2.2 光在很多情况下表现出波动行为 27
1.3 光是颗粒状的 28
1.3.1 光的颗粒特征在极低强度下*明显 29
1.3.2 光电效应 32
1.3.3 爱因斯坦的观点 35
1.3.4 生物学中的光诱导现象定性支持爱因斯坦关系 37
1.4 背景知识:泊松过程 37
1.4.1 泊松过程可以定义为伯努利重复试验的连续时间极限 38
1.4.2 固定时间间隔内的尖脉冲计数服从泊松分布 38
1.4.3 等待时间服从指数分布 39
1.5 光的新物理模型 39
1.5.1 光假说,第一部分 39
1.5.2 光谱可视为某个概率密度分布乘上总速率 40
1.5.3 光可以从单个分子中击出电子从而引发光化学反应 41
1.6 光子吸收可能导致荧光或光致异构化 42
1.6.1 电子态假说 42
1.6.2 原子具有尖锐的谱线 43
1.6.3 荧光分子 44
1.6.4 分子的光致异构化 47
1.7 透明介质不会被光照改变,但会降低光速 49
总结 49
关键公式 50
延伸阅读 51
习题 61
第2章 光子和生命 63
2.1 导读:观察和操控 63
2.2 光致DNA损伤 63
2.3 荧光是观察细胞内部的手段之一 65
2.3.1 荧光可用来辨别术中的健康与病灶组织 65
2.3.2 荧光显微镜可以降低背景噪声,并特异性地显示目标 67
2.4 背景知识:膜电位 69
2.4.1 离子运动导致的电流 69
2.4.2 跨膜离子失衡可以产生膜电位 69
2.4.3 离子泵维持跨膜静息电位 70
2.4.4 离子通道调节膜电位以实现神经信号转导 70
2.4.5 动作电位可以长距离传输信息 70
2.4.6 动作电位的产生和利用 72
2.4.7 关于突触传输的更多说明 73
2.5 光控遗传修饰技术 75
2.5.1 大脑很难研究 75
2.5.2 光敏通道蛋白可受光控使神经元去极化 75
2.5.3 嗜盐菌视紫红质可受光控使神经元超极化 77
2.5.4 其他方法 78
2.6 荧光报告蛋白可以实时反映细胞状态 78
2.6.1 电压敏感型荧光报告蛋白 78
2.6.2 劈裂的荧光蛋白以及基因改造的钙离子报告蛋白 80
2.7 双光子激发可以对活体组织内部成像 82
2.7.1 厚样品成像问题 82
2.7.2 双光子激发对光强度敏感 83
2.7.3 多光子显微镜可以激发样本的特定体积元 84
2.8 荧光共振能量转移 86
2.8.1 如何判断两个分子何时彼此接近 86
2.8.2 FRET的物理模型 89
2.8.3 某些形式的生物发光也涉及FRET 91
2.8.4 FRET可用作光谱“标尺”91
2.8.5 FRET在DNA弯曲柔韧性研究中的应用 93
2.8.6 基于FRET的报告蛋白 95
2.9 光合作用回顾 96
2.9.1 光合作用非常重要 97
2.9.2 两个定量谜题促进了我们对光合作用的理解 97
2.9.3 共振能量转移解决了这两个谜题 100
总结 102
关键公式 102
延伸阅读 103
习题 111
第3章 色觉 115
3.1 导读:第五维度 115
3.2 色觉提升进化适应度 116
3.3 牛顿的颜色实验 116
3.4 背景知识:泊松过程的更多性质 118
3.4.1 稀释特性 119
3.4.2 合并特性 119
3.4.3 上述特性对光的重要性 120
3.5 合并两束光相当于光谱加和 120
3.6 色彩的心理学 121
3.6.1 红(R)加绿(G)看起来像黄色(Y) 121
3.6.2 颜色辨别是多对一的 122
3.6.3 感知匹配遵循某些定量、可重复和背景无关的规则 122
3.7 选择性吸收导致的颜色 125
3.7.1 反射和透射光谱 125
3.7.2 减色法 125
3.8 色觉的物理建模 126
3.8.1 色匹配函数的难题 126
3.8.2 眼睛中的相关湿件 128
3.8.3 三色模型 129
3.8.4 三色模型解释了为什么R+G~Y 131
3.8.5 我们的眼睛将光谱投射到 3D矢量空间 132
3.8.6 色匹配的力学类比 133
3.8.7 力学类比和色觉之间的联系 135
3.8.8 与实验观察到的色匹配函数进行定量比较 135
3.9 为什么天空不是紫罗兰 137
3.10 视锥细胞马赛克图案的直接成像 138
总结 139
关键公式 139
延伸阅读 140
习题 150
第4章 光子如何知道往哪走 153
4.1 导读:概率幅 153
4.2 重要现象 154
4.3 概率幅 158
4.3.1 调和光的粒子性和波动性需要引入一个新的物理量 158
4.4 背景知识:引入复数能简化计算 160
4.5 光假说,第二部分 162
4.6 干涉现象 164
4.6.1 光假说解释双缝干涉 164
4.6.2 牛顿环阐明了三维装置的干涉 166
4.6.3 光假说的反对意见 168
4.7 稳相原理 169
4.7.1 菲涅耳积分阐明稳相原理 169
4.7.2 计算概率幅需要对光子所有可能路径求和 172
4.7.3 单个大光圈的衍射 173
4.7.4 调和光的粒子性和波动性 177
总结 178
关键公式 178
延伸阅读 179
习题 185
第5章 光学现象与生命 189
5.1 导读:分类和定向 189
5.2 昆虫、鸟类和海洋生物的结构色 189
5.2.1 一些动物使用透明材料的纳米结构产生颜色 190
5.2.2 光假说的扩展版本可描述界面处的反射和透射 192
5.2.3 单个薄透明层的反射与波长的弱依赖关系 193
5.2.4 多层薄透明介质的堆叠会产生光学带隙 195
5.2.5 海洋生物的结构色 197
5.3 几何光学 199
5.3.1 反射定律是稳相原理的结果 199
5.3.2 透射和反射光栅通过调制光子路径而产生非几何光学行为 200
5.3.3 折射定律是稳相原理应用于分段均匀介质的结果 201
5.3.4 全内反射为荧光显微镜提供了另一种增强信噪比的手段 203
5.3.5 折射通常与波长有关 205
总结 206
关键公式 206
延伸阅读 207
习题 209
II 人类与超人类视觉
第6章 直接成像 217
6.1 导读:既明亮又清晰的图像 217
6.2 无透镜成像 217
6.2.1 阴影成像 217
6.2.2 小孔成像足以满足某些动物的需求 218
6.3 加入透镜可得到既明亮又清晰的图像 219
6.3.1 聚焦准则将物距和像距与透镜形状关联起来 220
6.3.2 更一般的方法 224
6.3.3 完整像的形成 225
6.3.4 像差会在近轴极限之外降低成像质量 226
6.4 脊椎动物眼睛 226
6.4.1 空气-水界面的成像 228
6.4.2 复合透镜系统提升了聚焦能力 229
6.4.3 晶状体形变调焦 231
6.5 光学显微镜及其相关仪器 232
6.5.1“光线”是几何光学中很有用的理想化概念 232
6.5.2 实像和虚像 233
6.5.3 球差 234
6.5.4 色散产生色差 235
6.5.5 共聚焦显微镜可抑制失焦的背景光 236
6.6 达尔文困境 238
6.7 背景知识:角度和角面积 239
6.7.1 角度 239
6.7.2 角面积 240
6.8 衍射极限 240
6.8.1 完美透镜也不能完美聚焦光线 241
6.8.2 三维情况:瑞利判据 242
6.8.3 动物眼睛感光细胞的尺寸与衍射极限相匹配 244
总结 244
关键公式 245
延伸阅读 246
习题 247
第7章 基于统计推断的成像技术 256
7.1 导读:信息 256
7.2 背景:关于统计推断 257
7.2.1 贝叶斯公式可用于更新概率估计 257
7.2.2 基于均匀先验分布的推断相当于*大化似然函数 258
7.2.3 分布中心的推断 258
7.2.4 参数估计及置信区间 259
7.2.5 对数据分区会减少其信息量 259
7.3 单荧光基团的定位 260
7.3.1 定位可视为推断问题 260
7.3.2 建立概率模型 261
7.3.3 成像数据的*大似然分析 262
7.3.4 分子马达步进 264
7.4 定位显微镜 265
7.5 散焦定向成像 267
总结 269
关键公式 270
延伸阅读 270
习题 276
第8章 X射线衍射成像 281
8.1 导读:反演 281
8.2 原子分辨率的挑战 282
8.3 衍射图 283
8.3.1 周期性狭缝阵列产生衍射条纹 283
8.3.2 拓展到X射线晶体学 285
8.3.3 具有子结构的狭缝阵列的衍射图案可由形状因子调制 286
8.3.4 二维“晶体”产生二维衍射图 287
8.3.5 三维“晶体”也能用类似方法分析 288
8.4 DNA的衍射图案编码了其双螺旋特征 289
8.4.1 从衍射图可获知DNA螺距、碱基对间距、螺旋错位和螺旋直径 289
8.4.2 尺寸参数的精确测定解开了DNA结构和功能的难题 291
总
猜您喜欢