书籍详情
机器学习设计模式(影印版)
作者:Valliappa Lakshmanan,Sara Robinson,Michael ... 著
出版社:东南大学出版社
出版时间:2021-07-01
ISBN:9787564195540
定价:¥132.00
购买这本书可以去
内容简介
《机器学习设计模式(影印版)》中的设计模式针对机器学习中反复出现的问题给出实践和解决方案。作者为来自谷歌的三位工程师,他们整理了已证实的方法,帮助数据科学家解决整个机器学习过程中的常见问题。这些设计模式将数百位专家的经验转化成直接、易懂的建议。在这本书中,你会找到关于数据和问题表示、操作化、可重复性、可复现性、灵活性、可解释性和公平性的30种模式的详细解释。每个模式包括对问题的描述、各种可能的解决方案,以及针对你的情况选择技术的建议。你将学习:·识别和减轻在训练、评估以及部署机器学习模型时的常见挑战·为不同类型的机器学习模型表示数据,包括嵌入、特征交叉等·针对具体问题选择合适的模型类型·使用检查点、分发策略和超参数优化,建立一个鲁棒的训练循环·部署可扩展的机器学习系统,通过它你可以再训练和更新以反映新的数据·为用户解释模型的预测结果,确保模型公平地对待用户·提高模型的准确性、可复现性和弹性
作者简介
Valliappa(Lak)Lakshmanan是谷歌云数据分析和人工智能解决方案的全球负责人。Sara Robinson是谷歌云团队的开发者和倡导者,专注于机器学习。Michael Munn是谷歌的机器学习解决方案工程师,他帮助客户设计、实现和部署机器学习模型。
目录
Preface
1.The Need for Machine Learning Design Patterns
What Are Design Patterns?
How to Use This Book
Machine Learning Terminology
Models and Frameworks
Data and Feature Engineering
The Machine Learning Process
Data and Model Tooling
Roles
Common Chauenges in Machine Learning
Data Quality
Reproducibility
Data Drift
Scale
Multiple Objectives
Summary
2.Data Representation Design Patterns
Simple Data Representations
Numerical Inputs
Categorical Inputs
Design Pattern 1: Hashed Feature
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 2: Embeddings
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 3: Feature Cross
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 4: Multimodallnput
Problem
Solution
Trade-Offs and Alternatives
Summary
3.Problem Representation Design Patterns
Design Pattern 5: Reframing
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 6: Multilabel
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 7: Ensembles
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 8: Cascade
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 9: Neutral Class
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 10: Re alanang
Problem
……
4.ModeI Training Patterns...
5.Design Patterns for Resilient Serving
6.Reproduability Design Patterns
7.Responsible AI
8.Connected Patterns
Index
1.The Need for Machine Learning Design Patterns
What Are Design Patterns?
How to Use This Book
Machine Learning Terminology
Models and Frameworks
Data and Feature Engineering
The Machine Learning Process
Data and Model Tooling
Roles
Common Chauenges in Machine Learning
Data Quality
Reproducibility
Data Drift
Scale
Multiple Objectives
Summary
2.Data Representation Design Patterns
Simple Data Representations
Numerical Inputs
Categorical Inputs
Design Pattern 1: Hashed Feature
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 2: Embeddings
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 3: Feature Cross
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 4: Multimodallnput
Problem
Solution
Trade-Offs and Alternatives
Summary
3.Problem Representation Design Patterns
Design Pattern 5: Reframing
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 6: Multilabel
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 7: Ensembles
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 8: Cascade
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 9: Neutral Class
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 10: Re alanang
Problem
……
4.ModeI Training Patterns...
5.Design Patterns for Resilient Serving
6.Reproduability Design Patterns
7.Responsible AI
8.Connected Patterns
Index
猜您喜欢