书籍详情
面向程序员的AI与机器学习指南(影印版)
作者:Laurence Moroney 著
出版社:东南大学出版社
出版时间:2021-07-01
ISBN:9787564195557
定价:¥134.00
购买这本书可以去
内容简介
如果你想从程序员转型为人工智能专家,这里是一个理想的起点。基于LaurenceMoroney极其成功的人工智能课程,这本入门书提供了一种面向实践、代码优先的方法,帮助你在学习关键主题的同时建立信心。你所需要的只是Python的使用经验,了解其处理数据和数组的写法。你将学习如何实现机器学习中非常常见的场景,包括计算机视觉、自然语言处理(NLP)以及用于Web、移动、云端、嵌入式运行时的序列建模。大多数与机器学习相关的书开篇就是令人生畏的高级数学知识。这本指南提供了实用的课程,你可以直接同代码打交道。通过使用代码示例了解机器学习的基础知识使用TensorFlow为各种场景建模使用仅包含一个神经元的神经网络建模实现包括图像特征检测在内的计算机视觉使用NLP标记和序列化单词与句子将你的模型嵌入安卓和iOS设备通过TensorFlowServing在Web和云端提供模型
作者简介
Laurence Moroney,在Google负责AI倡导工作,教授软件开发人员如何通过机器学习构建AI系统。他是TensorFlowYouTube频道的常客,公认的全球主题演讲者,也是一位多产的作家。
目录
Foreword
Preface
Part I Building Models
1. Introduction to TensorFlow
What Is Machine Learning?
Limitations of Traditional Programming
From Programming to Learning
What Is TensorFlow?
Using TensorFlow
Installing TensorFlow in Python
Using TensorFlow in PyCharm
Using TensorFlow in Google Colab
Getting Started with Machine Learning
Seeing What the Network Learned
Summary
2. Introduction to Computer Vision
Recognizing Clothing Items
The Data: Fashion MNIST
Neurons for Vision
Designing the Neural Network
The Complete Code
Training the Neural Network
Exploring the Model Output
Training for Longer-Discovering Overfitting
Stopping Training
Summary
3. Going Beyond the Basics: Detecting Features in Images
Convolutions
Pooling
Implementing Convolutional Neural Networks
Exploring the Convolutional Network
Building a CNN to Distinguish Between Horses and Humans
The Horses or Humans Dataset
The Keras Image Data Generator
CNN Architecture for Horses or Humans
Adding Validation to the Horses or Humans Dataset
Testing Horse or Human Images
Image Augmentation
Transfer Learning
Multiclass Classification
Dropout Regularization
Summary
……
Part II Using Models
Index
Preface
Part I Building Models
1. Introduction to TensorFlow
What Is Machine Learning?
Limitations of Traditional Programming
From Programming to Learning
What Is TensorFlow?
Using TensorFlow
Installing TensorFlow in Python
Using TensorFlow in PyCharm
Using TensorFlow in Google Colab
Getting Started with Machine Learning
Seeing What the Network Learned
Summary
2. Introduction to Computer Vision
Recognizing Clothing Items
The Data: Fashion MNIST
Neurons for Vision
Designing the Neural Network
The Complete Code
Training the Neural Network
Exploring the Model Output
Training for Longer-Discovering Overfitting
Stopping Training
Summary
3. Going Beyond the Basics: Detecting Features in Images
Convolutions
Pooling
Implementing Convolutional Neural Networks
Exploring the Convolutional Network
Building a CNN to Distinguish Between Horses and Humans
The Horses or Humans Dataset
The Keras Image Data Generator
CNN Architecture for Horses or Humans
Adding Validation to the Horses or Humans Dataset
Testing Horse or Human Images
Image Augmentation
Transfer Learning
Multiclass Classification
Dropout Regularization
Summary
……
Part II Using Models
Index
猜您喜欢