书籍详情

生成对抗网络入门指南(第2版)

生成对抗网络入门指南(第2版)

作者:史丹青 著

出版社:机械工业出版社

出版时间:2021-06-01

ISBN:9787111683711

定价:¥89.00

购买这本书可以去
内容简介
  从2014年至今,与GAN有关的论文数量急剧增加,从谷歌学术的数据来看,数量仍在不断增加中。究其原因,除了科学研究本身的魅力之外,诸如文本到图像的生成、图像到图像的生成等应用研究也让业界非常兴奋,给人工智能领域带来诸多可能性。本书是GAN的入门书籍,结合基础理论、工程实践进行讲解,深入浅出地介绍GAN的技术发展以及各类衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能技术爱好者。书中包含GAN的理论知识与代码实践(示例代码可以从华章官网搜索下载),可帮助读者理解GAN的技术原理与实现细节。本书主要内容人工智能入门知识与开发工具GAN的理论与实践DCGAN、WGAN、cGAN等主流GAN衍生模型文本到图像、图像到图像以及离散数据的生成方法GAN与强化学习的关联BigGAN、StyleGAN等前沿GAN模型多媒体与艺术设计领域中的GAN应用
作者简介
  史丹青同济大学博士研究生,专业方向为人工智能与数据设计,在计算机会议上发表多篇智能生成相关论文。曾担任语忆科技联合创始人兼技术负责人,拥有多年人工智能领域创业与实战经验,具备深度学习、自然语言处理以及数据可视化等相关知识与技能。他是人工智能技术的爱好者,喜欢拥抱一切新兴科技,并始终坚信技术分享和开源精神的力量。
目录
第 1 章 人工智能入门 1
1.1 人工智能的历史以及发展 1
1.1.1 人工智能的诞生 3
1.1.2 人工智能的两起两落 6
1.1.3 新时代的人工智能 8
1.2 机器学习与深度学习 10
1.2.1 机器学习分类 11
1.2.2 神经网络与深度学习 12
1.2.3 深度学习的应用 13
1.3 了解生成对抗网络 15
1.3.1 从机器感知到机器创造 15
1.3.2 什么是生成对抗网络 18
1.4 本章小结 20
第 2 章 预备知识与开发工具 21
2.1 Python 语言与开发框架 21
2.1.1 Python 语言 21
2.1.2 常用工具简介 23
2.1.3 第三方框架简介 26
2.2 TensorFlow 基础入门 27
2.2.1 TensorFlow 简介与安装 27
2.2.2 TensorFlow 实例:图像分类 30
2.3 Keras 基础入门 32
2.3.1 Keras 简介与安装 32
2.3.2 Keras 使用入门 34
2.3.3 Keras 实例:文本情感分析 37
2.4 本章小结 39
第 3 章 理解生成对抗网络 40
3.1 生成模型 40
3.1.1 生成模型简介 40
3.1.2 自动编码器 42
3.1.3 变分自动编码器 44
3.2 GAN 的数学原理 47
3.2.1 似然估计 47
3.2.2 GAN 的数学推导 50
3.3 GAN 的可视化理解 54
3.4 GAN 的工程实践 55
3.5 本章小结 63
第 4 章 深度卷积生成对抗网络 64
4.1 DCGAN 的框架 64
4.1.1 DCGAN 设计规则 64
4.1.2 DCGAN 框架结构 68
4.2 DCGAN 的工程实践 69
4.3 DCGAN 的实验性应用 77
4.3.1 生成图像的变换 77
4.3.2 生成图像的算术运算 79
4.3.3 残缺图像的补全 81
4.4 本章小结 83
第 5 章 Wasserstein GAN 84
5.1 GAN 的优化问题 84
5.2 WGAN 的理论研究 88
5.3 WGAN 的工程实践 91
5.4 WGAN 的实验效果分析 95
5.4.1 代价函数与生成质量的相关性 95
5.4.2 生成网络的稳定性 96
5.4.3 模式崩溃问题 99
5.5 WGAN 的改进方案:WGAN-GP 99
5.6 本章小结 103
第 6 章 不同结构的 GAN 104
6.1 GAN 与监督式学习 104
6.1.1 条件式生成:cGAN 104
6.1.2 cGAN 在图像上的应用 106
6.2 GAN 与半监督式学习 109
6.2.1 半监督式生成:SGAN 109
6.2.2 辅助分类生成:ACGAN 111
6.3 GAN 与无监督式学习 112
6.3.1 无监督式学习与可解释型特征 112
6.3.2 理解 InfoGAN 114
6.4 本章小结 119
第 7 章 文本到图像的生成 120
7.1 文本条件式生成对抗网络 120
7.2 文本生成图像进阶:GAWWN 124
7.3 文本到高质量图像的生成 127
7.3.1 层级式图像生成:StackGAN 128
7.3.2 层级式图像生成的优化:StackGAN-v2 133
7.4 本章小结 135
第 8 章 图像到图像的生成 136
8.1 可交互图像转换:iGAN 136
8.1.1 可交互图像转换的用途 136
8.1.2 iGAN 的实现方法 138
8.1.3 iGAN 软件简介与使用方法 141
8.2 匹配数据图像转换:Pix2Pix 144
8.2.1 理解匹配数据的图像转换 144
8.2.2 Pix2Pix 的理论基础 146
8.2.3 Pix2Pix 的应用实践 150
8.3 非匹配数据图像转换:CycleGAN 157
8.3.1 理解非匹配数据的图像转换 157
8.3.2 CycleGAN 的理论基础 162
8.3.3 CycleGAN 的应用实践 165
8.4 多领域图像转换:StarGAN 171
8.4.1 多领域的图像转换问题 171
8.4.2 StarGAN 的理论基础 174
8.4.3 StarGAN 的应用实践 177
8.5 本章小结 182
第 9 章 序列数据的生成 183
9.1 序列生成的问题 183
9.2 GAN 的序列生成方法 184
9.3 自然语言生成 187
9.4 本章小结 191
第 10 章 GAN 与强化学习及逆向强化学习 192
10.1 GAN 与强化学习 192
10.1.1 强化学习基础 192
10.1.2 Actor-Critic 195
10.1.3 GAN 与强化学习的关联 196
10.2 GAN 与逆向强化学习 197
10.2.1 逆向强化学习基础 197
10.2.2 经典 IRL 算法 198
10.2.3 GAN 的模仿学习:GAIL 200
10.3 本章小结 201
第 11 章 新一代 GAN 202
11.1 GAN 的评估方法 202
11.2 GAN 的进化 205
11.2.1 SNGAN 与 SAGAN 205
11.2.2 BigGAN 206
11.2.3 StyleGAN 208
11.3 本章小结 210
第 12 章 GAN 的应用与发展 211
12.1 多媒体领域的应用 211
12.1.1 图像处理 211
12.1.2 音频合成 218
12.2 艺术领域的应用 221
12.2.1 AI 能否创造艺术 221
12.2.2 AI 与计算机艺术的发展 223
12.2.3 艺术生成网络:从艺术模仿到创意生成 231
12.3 设计领域的应用 238
12.3.1 AI 时代的设计 238
12.3.2 AI 辅助式设计的研究 240
12.4 安全领域的应用 249
12.5 本章小结 252
参考文献 253
猜您喜欢

读书导航