书籍详情
数字图像预处理技术及应用
作者:王敏,周树道 著
出版社:科学出版社
出版时间:2021-06-01
ISBN:9787030687784
定价:¥129.00
购买这本书可以去
内容简介
《数字图像预处理技术及应用》是作者在多年进行图像去噪、图像增强、图像融合和图像复原等数字图像预处理研究的基础上撰写而成的,系统地论述和分析图像去噪、图像增强、图像融合和图像复原的基础理论与相关技术。《数字图像预处理技术及应用》共分 12章,主要阐述若干种数字图像去噪、增强、融合与复原预处理算法,即基于小波域旋转奇异值分解的图像去噪算法、基于小波域奇异值差值的图像去噪算法、基于分块旋转奇异值分解的图像去噪算法、基于人工鱼群与粒子群优化的图像增强算法、基于突变粒子群优化的图像增强算法、基于亮度小波变换和颜色改善的图像增强算法、基于小波变换方向区域特征的图像融合算法、基于刃边函数和维纳滤波的模糊图像复原算法、基于分块奇异值的图像复原去噪算法、数字图像预处理技术相关应用等。
作者简介
暂缺《数字图像预处理技术及应用》作者简介
目录
目 录
前言
第 1 章 绪论 1
1.1 研究背景及意义 1
1.2 数字图像与数字图像预处理概述 3
1.2.1 数字图像的概念 3
1.2.2 数字图像处理的概念及特点 4
1.2.3 数字图像预处理研究范畴与方法 8
1.3 国内外研究现状 38
1.3.1 图像去噪技术 38
1.3.2 图像增强技术 40
1.3.3 图像融合技术 42
1.3.4 图像复原技术 43
1.4 数字图像预处理技术应用领域 45
1.4.1 航天和航空方面 45
1.4.2 生物医学工程方面 46
1.4.3 工业和工程方面 46
1.4.4 军事公安方面 46
1.4.5 文化艺术方面 46
1.4.6 机器视觉 46
1.4.7 视频和多媒体系统 47
1.4.8 电子商务 47
1.5 本书的课题来源及组织结构 47
1.5.1 本书的课题来源 47
1.5.2 本书主要内容 47
1.6 本章小结 50
第 2 章 基于小波域旋转奇异值分解的图像去噪算法 51
2.1 概述 51
2.2 小波变换和奇异值分解的方向特性 52
2.2.1 小波变换及其方向特性 52
2.2.2 奇异值分解及其方向特性 54
2.3 基于小波域旋转奇异值分解与边缘保留的图像去噪算法62
2.3.1 高频子图奇异值分解滤波 62
2.3.2 去噪重构奇异值个数的确定 63
2.3.3 高频子图像多方向边缘提取 64
2.3.4 算法流程 64
2.3.5 实验仿真 65
2.4 本章小结 72
第 3 章 基于小波域奇异值差值的图像去噪算法 74
3.1 概述 74
3.2 基于小波域奇异值差值建模的图像去噪算法 75
3.2.1 奇异值差值特点 75
3.2.2 算法流程 78
3.2.3 奇异值差值建模 79
3.2.4 确定去噪奇异值 83
3.2.5 实验仿真 83
3.3 本章小结 95
第 4 章 基于分块旋转奇异值分解的图像去噪算法 97
4.1 概述 97
4.2 图像分块旋转 SVD 去噪 98
4.3 基于自适应分块旋转的奇异值分解图像去噪算法 98
4.3.1 自适应分块 SVD 98
4.3.2 去噪重构奇异值个数的确定 100
4.3.3 算法流程 103
4.3.4 实验仿真 103
4.4 本章小结 107
第 5 章 基于人工鱼群与粒子群优化的图像增强算法 108
5.1 概述 108
5.2 图像非线性增强 109
5.3 人工鱼群算法及粒子群优化算法 110
5.3.1 人工鱼群算法 110
5.3.2 粒子群优化算法 115
5.4 基于人工鱼群与粒子群优化混合的图像自适应增强算法 118
5.4.1 人工鱼群及粒子群优化算法各自的缺陷 118
5.4.2 人工鱼群与粒子群优化混合增强算法 119
5.4.3 实验仿真 120
5.5 本章小结 122
第 6 章 基于突变粒子群优化的图像增强算法 123
6.1 概述 123
6.2 基于突变粒子群优化算法的图像自适应增强算法 123
6.2.1 基本粒子群优化算法 123
6.2.2 突变粒子群优化算法 125
6.2.3 算法流程 126
6.2.4 实验仿真 127
6.3 本章小结 128
第 7 章 基于亮度小波变换和颜色改善的图像增强算法 129
7.1 概述 129
7.2 基于亮度小波变换和颜色改善的图像去雾增强方法 129
7.2.1 小波变换图像增强方法 129
7.2.2 图像颜色改善方法 131
7.2.3 算法流程 132
7.2.4 实验仿真 132
7.3 本章小结 134
第 8 章 基于小波变换方向区域特征的图像融合算法 135
8.1 概述 135
8.2 小波变换图像融合缺陷 136
8.2.1 普通的低频空间频率融合缺陷 136
8.2.2 单一的高频能量或梯度融合缺陷 138
8.3 基于小波变换方向区域能量与梯度的图像融合算法 140
8.3.1 低频融合规则 141
8.3.2 高频融合规则 141
8.3.3 实验仿真 143
8.4 本章小结 147
第 9 章 基于刃边函数和维纳滤波的模糊图像复原算法 148
9.1 概述 148
9.2 点扩散函数估计 148
9.3 基于刃边函数和最优窗维纳滤波的运动模糊图像复原算法 155
9.3.1 最优窗维纳滤波 155
9.3.2 点扩散函数的确定 157
9.3.3 算法流程 159
9.3.4 实验仿真 160
9.4 本章小结 163
第 10 章 基于分块奇异值的图像复原去噪算法 164
10.1 概述 164
10.2 基于奇异值分解的点扩散函数估计 165
10.3 基于分块奇异值导数的图像复原去噪算法 167
10.3.1 奇异值重构阶数选取 168
10.3.2 实验仿真 168
10.4 本章小结 171
第 11 章 数字图像预处理技术的应用 173
11.1 基于小波变换和改进的奇异值分解的人脸识别技术 174
11.1.1 概述 174
11.1.2 具体方法 175
11.1.3 仿真实验 189
11.1.4 小结 196
11.2 基于小波变换及形态学重构的 SAR 图像边缘检测算法 196
11.2.1 概述 196
11.2.2 具体方法 197
11.2.3 仿真实验 199
11.2.4 小结 200
11.3 基于饱和度和区域一致性的静态水上物体分割算法 200
11.3.1 概述 200
11.3.2 具体方法 201
11.3.3 仿真分析 204
11.3.4 小结 204
11.4 基于灰度共生矩阵和小波纹理的 SAR 水面图像分割算法 205
11.4.1 概述 205
11.4.2 纹理特征提取 205
11.4.3 无监督分割算法 207
11.4.4 仿真实验及结果分析 208
11.4.5 小结 209
11.5 基于城市 GCP 模板的遥感图像几何校正研究算法 209
11.5.1 概述 209
11.5.2 遥感图像几何失真的原因 210
11.5.3 原始影像的校正方法 210
11.5.4 地面控制点模板 212
11.5.5 本节算法与实验结果 212
11.5.6 小结 214
11.6 本章小结 215
第 12 章 总结与展望 216
12.1 本书总结 216
12.2 研究展望 217
参考文献 219
彩图
前言
第 1 章 绪论 1
1.1 研究背景及意义 1
1.2 数字图像与数字图像预处理概述 3
1.2.1 数字图像的概念 3
1.2.2 数字图像处理的概念及特点 4
1.2.3 数字图像预处理研究范畴与方法 8
1.3 国内外研究现状 38
1.3.1 图像去噪技术 38
1.3.2 图像增强技术 40
1.3.3 图像融合技术 42
1.3.4 图像复原技术 43
1.4 数字图像预处理技术应用领域 45
1.4.1 航天和航空方面 45
1.4.2 生物医学工程方面 46
1.4.3 工业和工程方面 46
1.4.4 军事公安方面 46
1.4.5 文化艺术方面 46
1.4.6 机器视觉 46
1.4.7 视频和多媒体系统 47
1.4.8 电子商务 47
1.5 本书的课题来源及组织结构 47
1.5.1 本书的课题来源 47
1.5.2 本书主要内容 47
1.6 本章小结 50
第 2 章 基于小波域旋转奇异值分解的图像去噪算法 51
2.1 概述 51
2.2 小波变换和奇异值分解的方向特性 52
2.2.1 小波变换及其方向特性 52
2.2.2 奇异值分解及其方向特性 54
2.3 基于小波域旋转奇异值分解与边缘保留的图像去噪算法62
2.3.1 高频子图奇异值分解滤波 62
2.3.2 去噪重构奇异值个数的确定 63
2.3.3 高频子图像多方向边缘提取 64
2.3.4 算法流程 64
2.3.5 实验仿真 65
2.4 本章小结 72
第 3 章 基于小波域奇异值差值的图像去噪算法 74
3.1 概述 74
3.2 基于小波域奇异值差值建模的图像去噪算法 75
3.2.1 奇异值差值特点 75
3.2.2 算法流程 78
3.2.3 奇异值差值建模 79
3.2.4 确定去噪奇异值 83
3.2.5 实验仿真 83
3.3 本章小结 95
第 4 章 基于分块旋转奇异值分解的图像去噪算法 97
4.1 概述 97
4.2 图像分块旋转 SVD 去噪 98
4.3 基于自适应分块旋转的奇异值分解图像去噪算法 98
4.3.1 自适应分块 SVD 98
4.3.2 去噪重构奇异值个数的确定 100
4.3.3 算法流程 103
4.3.4 实验仿真 103
4.4 本章小结 107
第 5 章 基于人工鱼群与粒子群优化的图像增强算法 108
5.1 概述 108
5.2 图像非线性增强 109
5.3 人工鱼群算法及粒子群优化算法 110
5.3.1 人工鱼群算法 110
5.3.2 粒子群优化算法 115
5.4 基于人工鱼群与粒子群优化混合的图像自适应增强算法 118
5.4.1 人工鱼群及粒子群优化算法各自的缺陷 118
5.4.2 人工鱼群与粒子群优化混合增强算法 119
5.4.3 实验仿真 120
5.5 本章小结 122
第 6 章 基于突变粒子群优化的图像增强算法 123
6.1 概述 123
6.2 基于突变粒子群优化算法的图像自适应增强算法 123
6.2.1 基本粒子群优化算法 123
6.2.2 突变粒子群优化算法 125
6.2.3 算法流程 126
6.2.4 实验仿真 127
6.3 本章小结 128
第 7 章 基于亮度小波变换和颜色改善的图像增强算法 129
7.1 概述 129
7.2 基于亮度小波变换和颜色改善的图像去雾增强方法 129
7.2.1 小波变换图像增强方法 129
7.2.2 图像颜色改善方法 131
7.2.3 算法流程 132
7.2.4 实验仿真 132
7.3 本章小结 134
第 8 章 基于小波变换方向区域特征的图像融合算法 135
8.1 概述 135
8.2 小波变换图像融合缺陷 136
8.2.1 普通的低频空间频率融合缺陷 136
8.2.2 单一的高频能量或梯度融合缺陷 138
8.3 基于小波变换方向区域能量与梯度的图像融合算法 140
8.3.1 低频融合规则 141
8.3.2 高频融合规则 141
8.3.3 实验仿真 143
8.4 本章小结 147
第 9 章 基于刃边函数和维纳滤波的模糊图像复原算法 148
9.1 概述 148
9.2 点扩散函数估计 148
9.3 基于刃边函数和最优窗维纳滤波的运动模糊图像复原算法 155
9.3.1 最优窗维纳滤波 155
9.3.2 点扩散函数的确定 157
9.3.3 算法流程 159
9.3.4 实验仿真 160
9.4 本章小结 163
第 10 章 基于分块奇异值的图像复原去噪算法 164
10.1 概述 164
10.2 基于奇异值分解的点扩散函数估计 165
10.3 基于分块奇异值导数的图像复原去噪算法 167
10.3.1 奇异值重构阶数选取 168
10.3.2 实验仿真 168
10.4 本章小结 171
第 11 章 数字图像预处理技术的应用 173
11.1 基于小波变换和改进的奇异值分解的人脸识别技术 174
11.1.1 概述 174
11.1.2 具体方法 175
11.1.3 仿真实验 189
11.1.4 小结 196
11.2 基于小波变换及形态学重构的 SAR 图像边缘检测算法 196
11.2.1 概述 196
11.2.2 具体方法 197
11.2.3 仿真实验 199
11.2.4 小结 200
11.3 基于饱和度和区域一致性的静态水上物体分割算法 200
11.3.1 概述 200
11.3.2 具体方法 201
11.3.3 仿真分析 204
11.3.4 小结 204
11.4 基于灰度共生矩阵和小波纹理的 SAR 水面图像分割算法 205
11.4.1 概述 205
11.4.2 纹理特征提取 205
11.4.3 无监督分割算法 207
11.4.4 仿真实验及结果分析 208
11.4.5 小结 209
11.5 基于城市 GCP 模板的遥感图像几何校正研究算法 209
11.5.1 概述 209
11.5.2 遥感图像几何失真的原因 210
11.5.3 原始影像的校正方法 210
11.5.4 地面控制点模板 212
11.5.5 本节算法与实验结果 212
11.5.6 小结 214
11.6 本章小结 215
第 12 章 总结与展望 216
12.1 本书总结 216
12.2 研究展望 217
参考文献 219
彩图
猜您喜欢