书籍详情

改进的群智能算法及其应用

改进的群智能算法及其应用

作者:胡红萍 著

出版社:清华大学出版社

出版时间:2021-01-01

ISBN:9787302569633

定价:¥65.00

购买这本书可以去
内容简介
  本书主要包括利用改进的卷积神经网络实现合成孔径雷达目标识别,提出了改进的群智能算法,并结合机器学习实现合成孔径雷达目标识别、MEMS矢量水听器信号的去噪估计、癌症分类、传染病预测、空气质量指数预测与等级分类、机器人转向分类和地质水水质分类。本书有较强的实用性和应用性,既结合实际应用的需要,又从理论上加以指导。本书可作为应用数学、信号处理、图像处理、优化算法、预测与分类等方向研究生学习,还可供从事机器学习的科研工作者参考。
作者简介
  胡红萍,1973年7月生,博士,中北大学副教授,硕士生导师,主持山西省自然科学基金1项、山西省回国留学人员科研资助项目1项、山西省青年科技研究基金1项和博士后自然科学基金1项,参加国家自然科学基金4项、山西省自然科学基金3项、山西省重点研发计划项目1项,发表论文50余篇,其中高水平论文20余篇,山西省科技进步二等奖1项(排名第五)。主要从事人工智能、图像识别、信号处理、预测与分类等研究。
目录

目录


第1章绪论

1.1引言

1.2群智能算法与机器学习

1.2.1群智能算法

1.2.2机器学习

1.2.3机器学习与群智能优化算法的结合

1.3发展概述

1.3.1合成孔径雷达目标识别

1.3.2MEMS矢量水听器信号去噪和DOA估计

1.3.3基于基因表达谱的癌症分类

1.3.4传染病预测

1.3.5机器人移动转向与地表水水质分类

1.3.6空气质量指数的预测与分类

1.3.7股票指数预测

1.3.8预测性能指标

1.4本书的主要内容

第2章基于机器学习的合成孔径雷达目标识别

2.1引言

2.2基于CNN的合成孔径雷达目标识别

2.2.1基本CNN

2.2.2数据集

2.2.3数据预处理

2.2.4基于CNN与RF的合成孔径雷达目标识别

2.2.5基于CNNPCADT算法的SAR目标识别

2.3基于Harris鹰优化算法与支持向量机的SAR目标识别


2.3.1基本算法

2.3.2改进的Harris鹰算法

2.3.3函数极值寻优

2.3.4基于IHHO和SVM的SAR目标识别

2.3.5结论

2.4本章小结





第3章MEMS水听器的信号去噪与DOA估计

3.1引言

3.2基于变分模态分解和小波阈值处理的去噪和基线漂移去除方法

3.2.1基本原理

3.2.2基于VMD和NWT的联合去噪方法

3.2.3仿真数据去噪

3.2.4湖泊实验

3.2.5结论

3.3基于IGA小波软阈值的矢量水听器的去噪方法

3.3.1遗传算法

3.3.2基于改进遗传算法的去噪方法

3.3.3仿真实验

3.3.4实测实验

3.3.5结论

3.4改进的飞鼠搜索算法与DML的矢量水听器的DOA估计

3.4.1基本算法

3.4.2基于SSA和IWO的混合算法

3.4.3基准函数的极值寻优

3.4.4基于ISSADML的DOA估计

3.4.5结果分析与讨论

3.4.6结论

3.5本章小结

第4章基于基因表达谱的癌症分类

4.1引言

4.2基于BP、SVM和SKohonen的结肠癌的分类

4.2.1数据源

4.2.2数据处理

4.2.3实验结果

4.2.4结论


4.3基于人工神经网络的子宫内膜癌的分类

4.3.1数据源

4.3.2基于人工神经网络分类器的子宫内膜癌的分类

4.3.3基于改进的灰狼算法的子宫内膜癌的识别

4.4本章小结

第5章三类传染病的预测

5.1引言

5.2改进的人工蜂群算法对手足口病发病人数的预测

5.2.1基本蜂群算法

5.2.2改进的ABC算法

5.2.3ABCIWBP预测模型

5.2.4实验

5.2.5结论

5.3基于改进的蚁狮优化算法与人工神经网络的中国流感预测

5.3.1蚁狮优化算法

5.3.2改进的蚁狮算法

5.3.3基准函数的极值寻优

5.3.4IALO算法优化BP神经网络实现中国流感预测

5.3.5讨论

5.3.6结论

5.4基于改进的人工树算法和人工神经网络的流感样病例预测

5.4.1IATBPNN预测模型

5.4.2实验

5.4.3讨论

5.4.4结论

5.5基于改进的遗传算法与人工神经网络的流感样疾病的预测

5.5.1IWOGABPNN预测模型

5.5.2实验

5.5.3结论

5.6基于改进的MVO算法与Elman神经网络的流感样疾病的预测

5.6.1多元优化器

5.6.2改进的MVO算法

5.6.3实验

5.6.4结论

5.7本章小结


第6章机器人转向及地表水水质分类

6.1引言

6.2基于PSO与GSA的地表水水质及机器人转向分类

6.2.1引力搜索算法

6.2.2分类模型

6.2.3实验

6.2.4讨论

6.2.5结论

6.3基于PCA和改进的PSOSVM机器人转向分类

6.3.1基于PCA和改进的PSO算法优化SVM的分类模型

PSOSVM

6.3.2实验结果

6.3.3结论

6.4本章小结

第7章空气质量指数的预测与分类
7.1引言

7.2基于ISSASVM的空气质量的等级分类

7.2.1数据源

7.2.2实验结果

7.2.3结论

7.3基于改进的鲸优化算法的空气质量指数的预测

7.3.1鲸优化算法

7.3.2改进的鲸优化算法

7.3.3函数极值寻优

7.3.4基于IWOA的太原市AQI预测

7.3.5结论

7.4基于改进的粒子群算法和RBF神经网络的空气质量指数预测

7.4.1惯性权重的选择

7.4.2EDIWPSO算法优化的PBF模型

7.4.3实验

7.4.4结论

7.5基于TVIWPSOGSA算法与SVM的空气质量的等级分类

7.5.1分类模型

7.5.2实验

7.5.3结论


7.6基于改进的思维进化算法与BP神经网络的AQI预测

7.6.1思维进化算法

7.6.2改进的MEA算法

7.6.3基于MEAPSOGA的BP神经网络

7.6.4空气质量指数预测结果及分析

7.6.5结论

7.7基于飞蛾扑火算法与支持向量机的空气质量指数预测

7.7.1飞蛾扑火优化算法

7.7.2MFOSVM算法

7.7.3实验

7.7.4结论

7.8本章小结

第8章股市指数预测

8.1引言

8.2基于改进的正余弦算法的股票指数预测

8.2.1正余弦算法

8.2.2预测模型

8.2.3实验

8.2.4结论和讨论

8.3基于改进的Harris鹰优化算法与极限学习机的股票指数预测

8.3.1数据源

8.3.2基于IHHO和极限学习机的预测模型

8.3.3实验结果

8.3.4讨论

8.3.5结论

8.4基于改进的动态粒子群优化和AdaBoost算法的股票指数预测

8.4.1AdaBoost算法

8.4.2基于EDIWPSO和AdaBoost算法的GRBF模型

8.4.3实验

8.4.4结论

8.5本章小结

附录

参考文献
猜您喜欢

读书导航