书籍详情
Python大数据分析算法与实例
作者:邓立国 著
出版社:清华大学出版社
出版时间:2020-05-01
ISBN:9787302551065
定价:¥69.00
购买这本书可以去
内容简介
大数据时代,大数据分析是关键技术。Python是一款优秀的大数据分析软件,《Python大数据分析算法与实例》以Python 3结合第三方开源工具进行大数据分析,以小的代价编程实现数据的提取、处理、分析和可视化。 全书分为8章,首先介绍大数据分析的背景和行业应用,给出了数据特征算法分析;然后基于Python 3介绍常用典型第三方大数据分析工具的场景应用;最后比较翔实地阐述大数据分析算法与经典实例应用。 《Python大数据分析算法与实例》适合从事大数据分析的研究人员、计算机或数学等相关专业的从业者参考学习,也可以作为计算机或数学等专业本科高年级或研究生的专业用书。
作者简介
邓立国,东北大学计算机应用博士毕业。2005年开始在沈阳师范大学软件学院、教育技术学院任教,主要研究方向:数据挖掘、知识工程、大数据处理、云计算、分布式计算等。以第一作者发表学术论文30多篇(26篇EI),主编教材 1 部,主持科研课题6项,经费10余万元,多次获得校级科研优秀奖,作为九三社员提出的智慧城市提案被市政府采纳,研究成果被教育厅等单位采用。
目录
目 录
第1章 大数据分析概述 1
1.1 大数据分析背景 1
1.2 大数据分析的应用 2
1.3 大数据分析算法 3
1.4 大数据分析工具 6
1.5 本章小结 9
第2章 数据特征算法分析 10
2.1 数据分布性分析 10
2.1.1 数据分布特征集中趋势的测定 10
2.1.2 数据分布特征离散程度的测定 15
2.1.3 数据分布特征偏态与峰度的测定 19
2.2 数据相关性分析 21
2.2.1 数据相关关系 21
2.2.2 数据相关分析的主要内容 24
2.2.3 相关关系的测定 24
2.3 数据聚类性分析 26
2.3.1 聚类分析定义 26
2.3.2 聚类类型 27
2.3.3 聚类应用 29
2.4 数据主成分分析 29
2.4.1 主成分分析的原理及模型 30
2.4.2 数据主成分分析的几何解释 31
2.4.3 数据主成分的导出 32
2.4.4 证明主成分的方差是依次递减的 34
2.4.5 数据主成分分析的计算 35
2.5 数据动态性分析 36
2.6 数据可视化 40
2.7 本章小结 42
第3章 大数据分析工具:NumPy 43
3.1 NumPy简介 43
3.2 NumPy环境安装配置 44
3.3 ndarray对象 45
3.4 数据类型 47
3.5 数组属性 49
3.6 数组创建例程 52
3.7 切片和索引 57
3.8 广播 60
3.9 数组操作与迭代 61
3.10 位操作与字符串函数 87
3.11 数学运算函数 91
3.12 算数运算 93
3.13 统计函数 97
3.14 排序、搜索和计数函数 101
3.15 字节交换 104
3.16 副本和视图 105
3.17 矩阵库 107
3.18 线性代数模块 109
3.19 Matplotlib库 112
3.20 Matplotlib 绘制直方图 114
3.21 IO文件操作 116
3.22 NumPy实例:GPS定位 117
3.23 本章小结 120
第4章 大数据分析工具:SciPy 121
4.1 SciPy简介 121
4.2 文件输入和输出:SciPy.io 122
4.3 特殊函数:SciPy.special 123
4.4 线性代数操作:SciPy.linalg 124
4.5 快速傅里叶变换:sipy.fftpack 124
4.6 优化器:SciPy.optimize 125
4.7 统计工具:SciPy.stats 126
4.8 SciPy实例 127
4.8.1 最小二乘拟合 127
4.8.2 函数最小值 128
4.9 本章小结 130
第5章 大数据分析工具:Matplotlib 131
5.1 初级绘制 131
5.2 图像、子区、子图、刻度 137
5.3 其他种类的绘图 140
5.4 本章小结 147
第6章 大数据分析工具:Pandas 148
6.1 Pandas系列 148
6.2 Pandas数据帧 151
6.3 Pandas面板 155
6.4 Pandas快速入门 158
6.5 本章小结 172
第7章 大数据分析工具:Statsmodels与Gensim 173
7.1 Statsmodels 173
7.1.1 Statsmodels统计数据库 173
7.1.2 Statsmodels典型的拟合模型概述 175
7.1.3 Statsmodels举例 176
7.2 Gensim 178
7.2.1 基本概念 178
7.2.2 训练语料的预处理 179
7.2.3 主题向量的变换 180
7.2.4 文档相似度的计算 181
7.3 本章小结 182
第8章 大数据分析算法与实例 183
8.1 描述统计 183
8.2 假设检验 188
8.3 信度分析 192
8.4 列联表分析 195
8.5 相关分析 196
8.6 方差分析 198
8.6.1 单因素方差分析 199
8.6.2 多因素方差分析 201
8.7 回归分析 203
8.8 聚类分析 207
8.9 判别分析 212
8.10 主成分分析 216
8.11 因子分析 218
8.12 时间序列分析 221
8.13 生存分析 224
8.14 典型相关分析 245
8.15 RoC分析 250
8.16 距离分析 255
8.17 对应分析 264
8.18 决策树分析 265
8.19 神经网络-深度学习 271
8.19.1 深度学习的基本模型 271
8.19.2 新闻分类实例 275
8.20 蒙特·卡罗模拟 280
8.20.1 蒙特·卡罗模拟基本模型 281
8.20.2 蒙特·卡罗模拟计算看涨期权实例 281
8.21 关联规则 287
8.21.1 关联规则的概念 288
8.21.2 Apriori算法及实例 289
8.21.3 FP树频集算法 292
8.22 Uplift Modeling 301
8.23 集成方法 306
8.24 异常检测 311
8.25 文本挖掘 315
8.26 Boosting算法(提升法和Gradient Boosting) 322
8.27 本章小结 325
参考文献 326
第1章 大数据分析概述 1
1.1 大数据分析背景 1
1.2 大数据分析的应用 2
1.3 大数据分析算法 3
1.4 大数据分析工具 6
1.5 本章小结 9
第2章 数据特征算法分析 10
2.1 数据分布性分析 10
2.1.1 数据分布特征集中趋势的测定 10
2.1.2 数据分布特征离散程度的测定 15
2.1.3 数据分布特征偏态与峰度的测定 19
2.2 数据相关性分析 21
2.2.1 数据相关关系 21
2.2.2 数据相关分析的主要内容 24
2.2.3 相关关系的测定 24
2.3 数据聚类性分析 26
2.3.1 聚类分析定义 26
2.3.2 聚类类型 27
2.3.3 聚类应用 29
2.4 数据主成分分析 29
2.4.1 主成分分析的原理及模型 30
2.4.2 数据主成分分析的几何解释 31
2.4.3 数据主成分的导出 32
2.4.4 证明主成分的方差是依次递减的 34
2.4.5 数据主成分分析的计算 35
2.5 数据动态性分析 36
2.6 数据可视化 40
2.7 本章小结 42
第3章 大数据分析工具:NumPy 43
3.1 NumPy简介 43
3.2 NumPy环境安装配置 44
3.3 ndarray对象 45
3.4 数据类型 47
3.5 数组属性 49
3.6 数组创建例程 52
3.7 切片和索引 57
3.8 广播 60
3.9 数组操作与迭代 61
3.10 位操作与字符串函数 87
3.11 数学运算函数 91
3.12 算数运算 93
3.13 统计函数 97
3.14 排序、搜索和计数函数 101
3.15 字节交换 104
3.16 副本和视图 105
3.17 矩阵库 107
3.18 线性代数模块 109
3.19 Matplotlib库 112
3.20 Matplotlib 绘制直方图 114
3.21 IO文件操作 116
3.22 NumPy实例:GPS定位 117
3.23 本章小结 120
第4章 大数据分析工具:SciPy 121
4.1 SciPy简介 121
4.2 文件输入和输出:SciPy.io 122
4.3 特殊函数:SciPy.special 123
4.4 线性代数操作:SciPy.linalg 124
4.5 快速傅里叶变换:sipy.fftpack 124
4.6 优化器:SciPy.optimize 125
4.7 统计工具:SciPy.stats 126
4.8 SciPy实例 127
4.8.1 最小二乘拟合 127
4.8.2 函数最小值 128
4.9 本章小结 130
第5章 大数据分析工具:Matplotlib 131
5.1 初级绘制 131
5.2 图像、子区、子图、刻度 137
5.3 其他种类的绘图 140
5.4 本章小结 147
第6章 大数据分析工具:Pandas 148
6.1 Pandas系列 148
6.2 Pandas数据帧 151
6.3 Pandas面板 155
6.4 Pandas快速入门 158
6.5 本章小结 172
第7章 大数据分析工具:Statsmodels与Gensim 173
7.1 Statsmodels 173
7.1.1 Statsmodels统计数据库 173
7.1.2 Statsmodels典型的拟合模型概述 175
7.1.3 Statsmodels举例 176
7.2 Gensim 178
7.2.1 基本概念 178
7.2.2 训练语料的预处理 179
7.2.3 主题向量的变换 180
7.2.4 文档相似度的计算 181
7.3 本章小结 182
第8章 大数据分析算法与实例 183
8.1 描述统计 183
8.2 假设检验 188
8.3 信度分析 192
8.4 列联表分析 195
8.5 相关分析 196
8.6 方差分析 198
8.6.1 单因素方差分析 199
8.6.2 多因素方差分析 201
8.7 回归分析 203
8.8 聚类分析 207
8.9 判别分析 212
8.10 主成分分析 216
8.11 因子分析 218
8.12 时间序列分析 221
8.13 生存分析 224
8.14 典型相关分析 245
8.15 RoC分析 250
8.16 距离分析 255
8.17 对应分析 264
8.18 决策树分析 265
8.19 神经网络-深度学习 271
8.19.1 深度学习的基本模型 271
8.19.2 新闻分类实例 275
8.20 蒙特·卡罗模拟 280
8.20.1 蒙特·卡罗模拟基本模型 281
8.20.2 蒙特·卡罗模拟计算看涨期权实例 281
8.21 关联规则 287
8.21.1 关联规则的概念 288
8.21.2 Apriori算法及实例 289
8.21.3 FP树频集算法 292
8.22 Uplift Modeling 301
8.23 集成方法 306
8.24 异常检测 311
8.25 文本挖掘 315
8.26 Boosting算法(提升法和Gradient Boosting) 322
8.27 本章小结 325
参考文献 326
猜您喜欢