书籍详情
量化投资:交易模型开发与数据挖掘
作者:韩焘
出版社:电子工业出版社
出版时间:2019-11-01
ISBN:9787121375866
定价:¥99.00
购买这本书可以去
内容简介
本书是一本利用Python技术,结合人工智能、神经网络和机器学习、遗传算法等互联网技术进行相应行业模型开发的技术图书。本书第1~4 章主要讲解了利用Python软件分析模型开发的入门知识,包括开发工具的使用、测试技术难点等内容;第5~7 章主要讲解了利用人工智能中的神经网络技术进行技术研发,利用数据挖掘技术完善行业技术模型的数据加载与分析等内容;第8~9 章主要讲解了利用大数据进行技术配置和风险控制等内容;第10~11 章主要讲解了利用机器学习与遗传算法进行相应模型开发等内容。全书内容专业,案例丰富翔实,是作者多年来利用开发软件和人工智能结合进行相关领域软件开发与探索的*佳结晶。本书不仅适合想利用Python进行软件开发的用户,也适合有一定经验但想深入掌握人工智能、机器学习技术进行行业应用的用户使用,还可以作为机构培训的优秀教材。
作者简介
韩焘,北京建设大学毕业,2012-2017年在宁夏恒御有限公司参与软件开发工作;2018-2019年在北京某有限公司任技术总监,由于对Java与Python语言的熟练使用,主导并设计开发了公司的数据风控模型等。个人爱好新技术,并相信人工智能中的深度学习、神经网络技术能提升工作效率,自行开发各种小程序应用于工作中。
目录
第 1 章\t量化投资入门\t1
1.1\t量化投资及定义\t1
1.2\t量化投资与传统投资的比较\t2
1.2.1\t两种投资策略简介\t2
1.2.2\t量化投资相对于传统投资的主要优势\t2
1.3\t量化投资的国外发展现状及国内投资市场未来展望\t4
1.3.1\t量化金融和理论的建立过程\t4
1.3.2\t国外量化投资基金的发展历史\t5
1.3.3\t国内量化投资基金的发展历史\t8
1.3.4\t国内投资市场未来展望\t8
1.4\t突发汇率、加息、商誉的应对方法\t9
1.4.1\t突发汇率变化和加息的应对方法\t10
1.4.2\t面对商誉减值的应对方法\t12
第 2 章\t量化投资策略的设计思路\t17
2.1\t量化投资策略的研发流程\t18
2.2\t量化投资策略的可行性研究\t20
2.3\t量化平台常用语言―Python \t22
2.3.1\tPython 简介\t22
2.3.2\t量化基础语法及数据结构\t23
2.3.3\t量化中函数的定义及使用方法\t40
2.3.4\t面向对象编程 OOP 的定义及使用方法\t43
2.3.5\titertools 的使用方法\t48
2.4\t量化投资工具―Matplotlib \t51
2.4.1\tMatplotlib 基础知识\t52
2.4.2\tMatplotlib 可视化工具基础\t56
2.4.3\tMatplotlib 子画布及 loc 的使用\t58
2.5\tMatplotlib 绘制 K 线图的方法\t61
2.5.1\t安装财经数据接口包(Tushare)和绘图包(mpl_finance)\t61
2.5.2\t绘制 K 线图示例\t62
第 3 章\t量化投资策略回测\t65
3.1\t选择回测平台的技巧\t65
3.1.1\t根据个人特点选择回测平台\t66
3.1.2\t回测平台的使用方法与技巧\t66
3.2\t调用金融数据库中的数据\t68
3.2.1\t历史数据库的调取\t68
3.2.2\t数据库的分析方法与技巧\t72
3.3\t回测与实际业绩预期偏差的调试方法\t74
3.4\t设置回测参数\t75
3.4.1\tstart 和 end 回测起止时间\t75
3.4.2\tuniverse 证券池\t76
3.4.3\tbenchmark 参考基准\t78
3.4.4\tfreq 和 refresh_rate 策略运行频率\t78
3.5\t账户设置\t83
3.5.1\taccounts 账户配置\t83
3.5.2\tAccountConfig 账户配置\t85
3.6\t策略基本方法\t88
3.7\t策略运行环境\t89
3.7.1\tnow\t90
3.7.2\tcurrent_date\t90
3.7.3\tprevious_date\t91
3.7.4\tcurrent_minute\t91
3.7.5\tcurrent_price\t92
3.7.6\tget_account\t93
3.7.7\tget_universe\t93
3.7.8\ttransfer_cash\t95
3.8\t获取和调用数据\t96
3.8.1\thistory\t96
3.8.2\tget_symbol_history\t103
3.8.3\tget_attribute_history\t105
3.8.4\tDataAPI\t107
3.9\t账户相关属性\t107
3.9.1\t下单函数\t107
3.9.2\t获取账户信息\t115
3.10\t策略结果展示\t120
3.11\t批量回测\t122
第 4 章\t量化投资择时策略与选股策略的推进方法\t125
4.1\t多因子选股策略\t125
4.1.1\t多因子模型基本方法\t125
4.1.2\t单因子分析流程\t126
4.1.3\t多因子(对冲)策略逻辑\t134
4.1.4\t多因子(裸多)策略逻辑\t139
4.2\t多因子选股技巧\t141
4.2.1\t定义股票池\t141
4.2.2\t指标选股\t143
4.2.3\t指标排序\t145
4.2.4\t查看选股\t146
4.2.5\t交易配置\t147
4.2.6\t策略回测\t147
4.3\t择时―均线趋势策略\t148
4.3.1\t格兰维尔移动平均线八大法则\t149
4.3.2\t双均线交易系统\t150
4.4\t择时―移动平均线模型\t151
4.4.1\tMA 模型的性质\t151
4.4.2\tMA 的阶次判定\t153
4.4.3\t建模和预测\t154
4.5\t择时―自回归策略\t155
4.5.1\tAR(p)模型的特征根及平稳性检验\t156
4.5.2\tAR(p)模型的定阶\t158
4.6\t择时―均线混合策略\t163
4.6.1\t识别 ARMA 模型阶次\t164
4.6.2\tARIMA 模型\t167
第 5 章\t量化对冲策略\t174
5.1\t宏观对冲策略\t174
5.1.1\t美林时钟\t175
5.1.2\t宏观对冲策略特征\t178
5.2\t微观对冲策略:股票投资中的 Alpha 策略和配对交易\t178
5.2.1\t配对交易策略\t178
5.2.2\t配对交易策略之协整策略\t185
5.2.3\t市场中性 Alpha 策略简介\t202
5.2.4\tAlphaHorizon 单因子分析模块\t203
5.3\t数据加载\t204
5.3.1\tuqer 数据获取函数\t204
5.3.2\t通过 uqer 获取数据\t209
5.3.3\t因子数据简单处理\t211
5.4\tAlphaHorizon 因子分析―数据格式化\t213
5.5\t收益分析\t214
5.5.1\t因子选股的分位数组合超额收益\t214
5.5.2\t等权做多多头分位、做空空头分位收益率分析策略\t217
5.5.3\t等权做多多头分位累计净值计算\t220
5.5.4\t多头分位组合实际净值走势图\t221
5.5.5\t以因子值加权构建组合\t222
5.6\t信息系数分析\t223
5.6.1\t因子信息系数时间序列\t223
5.6.2\t因子信息系数数据分布特征\t224
5.6.3\t因子信息系数月度热点图\t225
5.6.4\t因子信息系数衰减分析\t226
5.7\t换手率、因子自相关性分析\t227
5.8\t分类行业分析\t228
5.9\t总结性分析数据\t231
5.10\tAlphaHorizon 完整分析模板\t233
第 6 章\t数据挖掘\t241
6.1\t数据挖掘分类模式\t241
6.2\t数据挖掘之神经网络\t242
6.2.1\t循环神经网络数据的准备和处理\t243
6.2.2\t获取因子的原始数据值和股价涨跌数据\t243
6.2.3\t对数据进行去极值、中性化、标准化处理\t246
6.2.4\t利用不同模型对因子进行合成\t256
6.2.5\t合成因子效果的分析和比较\t269
6.2.6\t投资组合的构建和回测\t270
6.2.7\t不同模型的回测指标比较\t282
6.3\t决策树\t295
6.3.1\t决策树原始数据\t295
6.3.2\t决策树基本组成\t296
6.3.3\tID3 算法\t297
6.3.4\t决策树剪枝\t302
6.4\t联机分析处理\t303
6.5\t数据可视化\t304
第 7 章\t量化投资中数据挖掘的使用方法\t306
7.1\tSOM 神经网络\t306
7.2\tSOM 神经网络结构\t307
7.3\t利用SOM 模型对股票进行分析的方法\t308
7.3.1\tSOM 模型中的数据处理\t308
7.3.2\tSOM 模型实验\t309
7.3.3\tSOM 模型实验结果\t310
第 8 章\t量化投资的资金和风险控制\t311
8.1\t资产配置的定义及分类\t311
8.2\t资产配置杠杆的使用\t312
8.2.1\t宏观杠杆实例\t312
8.2.2\t微观杠杆实例\t313
8.3\t资产配置策略\t314
8.3.1\t最小方差组合简介\t314
8.3.2\t经典资产配置 B-L 模型\t322
8.4\t风险平价配置方法的理论与实践\t335
8.4.1\t风险平价配置方法的基本理念\t335
8.4.2\t风险平价配置理论介绍\t336
8.5\t资产风险的来源\t343
8.5.1\t市场风险\t343
8.5.2\t利率风险\t344
8.5.3\t汇率风险\t344
8.5.4\t流动性风险\t345
8.5.5\t信用风险\t345
8.5.6\t通货膨胀风险\t346
8.5.7\t营运风险\t346
8.6\t风险管理细则风险控制的 4 种基本方法\t347
8.6.1\t风险回避\t347
8.6.2\t损失控制\t348
8.6.3\t风险转移\t348
8.6.4\t风险保留\t348
8.7\t做好主观止损的技巧\t349
8.7.1\t没做好止损―中国石油\t349
8.7.2\t积极止损―中国外运\t350
第 9 章\t量化仓位决策\t354
9.1\t凯利公式基本概念\t354
9.1.1\t凯利公式的两个不同版本\t355
9.1.2\t凯利公式的使用方法\t355
9.1.3\t用凯利公式解答两个小例子\t356
9.1.4\t在实战中运用凯利公式的难点\t356
9.2\t凯利公式实验验证\t357
9.2.1\t收益率为正态分布时的凯利公式\t357
9.3\t等价鞅策略与反等价鞅策略\t367
9.3.1\t等价鞅策略定义及示例\t367
9.3.2\t反等价鞅策略定义及示例\t368
9.4\t购买股指期货 IF1905 被套心理分析及应对策略\t371
9.5\t期货趋势策略仓位管理方法\t372
9.5.1\t期货交易策略\t373
9.5.2\t仓位管理的八大方法\t373
9.6\t海龟交易法操作商品期货策略\t375
9.6.1\t海龟交易步骤回顾\t375
9.6.2\t需要用到的计算、判断函数\t376
9.6.3\t海龟交易回测\t378
9.6.4\t日线螺纹钢测试\t379
9.6.5\t测试不同商品在唐奇安通道 N 上的表现\t385
第 10 章\t机器学习与遗传算法\t393
10.1\t机器学习系统及策略\t393
10.1.1\t学习策略简介\t394
10.1.2\t学习策略分类\t394
10.2\t演绎推理及归纳推理规则\t396
10.2.1\t自动推理\t396
10.2.2\t演绎推理及示例\t396
10.2.3\t归纳推理及示例\t397
10.2.4\t自然演绎推理及示例\t399
10.3\t专家系统体系结构\t401
10.3.1\t专家系统的定义\t401
10.3.2\t专家系统的构成\t401
10.3.3\t专家系统的分类\t402
10.3.4\t专家系统的特点\t403
10.4\t遗传算法基本原理及应用\t404
10.4.1\t遗传算法简介与特点\t404
10.4.2\t基本遗传算法多层次框架图\t405
10.4.3\t遗传算法实施步骤\t406
10.4.4\t遗传算法应用\t406
10.5\t使用遗传算法筛选内嵌因子\t407
10.5.1\t首先加入 Python 包\t407
10.5.2\t设定时间回测范围\t409
10.5.3\t设置标准化过程\t410
10.5.4\t训练,测试集合的选择\t412
10.5.5\t评价指标\t413
10.5.6\t利用遗传算法改进过程\t414
第 11 章\t人工智能在量化投资策略中的应用\t420
11.1\t人工智能选股 Boosting 模型使用方法\t420
11.1.1\t对数据进行预处理―获取因子数据和股价涨跌数据\t420
11.1.2\t对数据进行去极值、中性化、标准化处理\t424
11.1.3\t模型数据准备\t428
11.2\tBoosting 模型因子合成\t430
11.2.1\t模型训练\t431
11.2.2\t模型结果分析\t437
11.2.3\t因子重要度分析\t438
11.3\t因子测试\t440
11.3.1\t载入因子文件\t440
11.3.2\t回测详情\t441
11.3.3\tBoosting 模型合成因子分组回测\t459
1.1\t量化投资及定义\t1
1.2\t量化投资与传统投资的比较\t2
1.2.1\t两种投资策略简介\t2
1.2.2\t量化投资相对于传统投资的主要优势\t2
1.3\t量化投资的国外发展现状及国内投资市场未来展望\t4
1.3.1\t量化金融和理论的建立过程\t4
1.3.2\t国外量化投资基金的发展历史\t5
1.3.3\t国内量化投资基金的发展历史\t8
1.3.4\t国内投资市场未来展望\t8
1.4\t突发汇率、加息、商誉的应对方法\t9
1.4.1\t突发汇率变化和加息的应对方法\t10
1.4.2\t面对商誉减值的应对方法\t12
第 2 章\t量化投资策略的设计思路\t17
2.1\t量化投资策略的研发流程\t18
2.2\t量化投资策略的可行性研究\t20
2.3\t量化平台常用语言―Python \t22
2.3.1\tPython 简介\t22
2.3.2\t量化基础语法及数据结构\t23
2.3.3\t量化中函数的定义及使用方法\t40
2.3.4\t面向对象编程 OOP 的定义及使用方法\t43
2.3.5\titertools 的使用方法\t48
2.4\t量化投资工具―Matplotlib \t51
2.4.1\tMatplotlib 基础知识\t52
2.4.2\tMatplotlib 可视化工具基础\t56
2.4.3\tMatplotlib 子画布及 loc 的使用\t58
2.5\tMatplotlib 绘制 K 线图的方法\t61
2.5.1\t安装财经数据接口包(Tushare)和绘图包(mpl_finance)\t61
2.5.2\t绘制 K 线图示例\t62
第 3 章\t量化投资策略回测\t65
3.1\t选择回测平台的技巧\t65
3.1.1\t根据个人特点选择回测平台\t66
3.1.2\t回测平台的使用方法与技巧\t66
3.2\t调用金融数据库中的数据\t68
3.2.1\t历史数据库的调取\t68
3.2.2\t数据库的分析方法与技巧\t72
3.3\t回测与实际业绩预期偏差的调试方法\t74
3.4\t设置回测参数\t75
3.4.1\tstart 和 end 回测起止时间\t75
3.4.2\tuniverse 证券池\t76
3.4.3\tbenchmark 参考基准\t78
3.4.4\tfreq 和 refresh_rate 策略运行频率\t78
3.5\t账户设置\t83
3.5.1\taccounts 账户配置\t83
3.5.2\tAccountConfig 账户配置\t85
3.6\t策略基本方法\t88
3.7\t策略运行环境\t89
3.7.1\tnow\t90
3.7.2\tcurrent_date\t90
3.7.3\tprevious_date\t91
3.7.4\tcurrent_minute\t91
3.7.5\tcurrent_price\t92
3.7.6\tget_account\t93
3.7.7\tget_universe\t93
3.7.8\ttransfer_cash\t95
3.8\t获取和调用数据\t96
3.8.1\thistory\t96
3.8.2\tget_symbol_history\t103
3.8.3\tget_attribute_history\t105
3.8.4\tDataAPI\t107
3.9\t账户相关属性\t107
3.9.1\t下单函数\t107
3.9.2\t获取账户信息\t115
3.10\t策略结果展示\t120
3.11\t批量回测\t122
第 4 章\t量化投资择时策略与选股策略的推进方法\t125
4.1\t多因子选股策略\t125
4.1.1\t多因子模型基本方法\t125
4.1.2\t单因子分析流程\t126
4.1.3\t多因子(对冲)策略逻辑\t134
4.1.4\t多因子(裸多)策略逻辑\t139
4.2\t多因子选股技巧\t141
4.2.1\t定义股票池\t141
4.2.2\t指标选股\t143
4.2.3\t指标排序\t145
4.2.4\t查看选股\t146
4.2.5\t交易配置\t147
4.2.6\t策略回测\t147
4.3\t择时―均线趋势策略\t148
4.3.1\t格兰维尔移动平均线八大法则\t149
4.3.2\t双均线交易系统\t150
4.4\t择时―移动平均线模型\t151
4.4.1\tMA 模型的性质\t151
4.4.2\tMA 的阶次判定\t153
4.4.3\t建模和预测\t154
4.5\t择时―自回归策略\t155
4.5.1\tAR(p)模型的特征根及平稳性检验\t156
4.5.2\tAR(p)模型的定阶\t158
4.6\t择时―均线混合策略\t163
4.6.1\t识别 ARMA 模型阶次\t164
4.6.2\tARIMA 模型\t167
第 5 章\t量化对冲策略\t174
5.1\t宏观对冲策略\t174
5.1.1\t美林时钟\t175
5.1.2\t宏观对冲策略特征\t178
5.2\t微观对冲策略:股票投资中的 Alpha 策略和配对交易\t178
5.2.1\t配对交易策略\t178
5.2.2\t配对交易策略之协整策略\t185
5.2.3\t市场中性 Alpha 策略简介\t202
5.2.4\tAlphaHorizon 单因子分析模块\t203
5.3\t数据加载\t204
5.3.1\tuqer 数据获取函数\t204
5.3.2\t通过 uqer 获取数据\t209
5.3.3\t因子数据简单处理\t211
5.4\tAlphaHorizon 因子分析―数据格式化\t213
5.5\t收益分析\t214
5.5.1\t因子选股的分位数组合超额收益\t214
5.5.2\t等权做多多头分位、做空空头分位收益率分析策略\t217
5.5.3\t等权做多多头分位累计净值计算\t220
5.5.4\t多头分位组合实际净值走势图\t221
5.5.5\t以因子值加权构建组合\t222
5.6\t信息系数分析\t223
5.6.1\t因子信息系数时间序列\t223
5.6.2\t因子信息系数数据分布特征\t224
5.6.3\t因子信息系数月度热点图\t225
5.6.4\t因子信息系数衰减分析\t226
5.7\t换手率、因子自相关性分析\t227
5.8\t分类行业分析\t228
5.9\t总结性分析数据\t231
5.10\tAlphaHorizon 完整分析模板\t233
第 6 章\t数据挖掘\t241
6.1\t数据挖掘分类模式\t241
6.2\t数据挖掘之神经网络\t242
6.2.1\t循环神经网络数据的准备和处理\t243
6.2.2\t获取因子的原始数据值和股价涨跌数据\t243
6.2.3\t对数据进行去极值、中性化、标准化处理\t246
6.2.4\t利用不同模型对因子进行合成\t256
6.2.5\t合成因子效果的分析和比较\t269
6.2.6\t投资组合的构建和回测\t270
6.2.7\t不同模型的回测指标比较\t282
6.3\t决策树\t295
6.3.1\t决策树原始数据\t295
6.3.2\t决策树基本组成\t296
6.3.3\tID3 算法\t297
6.3.4\t决策树剪枝\t302
6.4\t联机分析处理\t303
6.5\t数据可视化\t304
第 7 章\t量化投资中数据挖掘的使用方法\t306
7.1\tSOM 神经网络\t306
7.2\tSOM 神经网络结构\t307
7.3\t利用SOM 模型对股票进行分析的方法\t308
7.3.1\tSOM 模型中的数据处理\t308
7.3.2\tSOM 模型实验\t309
7.3.3\tSOM 模型实验结果\t310
第 8 章\t量化投资的资金和风险控制\t311
8.1\t资产配置的定义及分类\t311
8.2\t资产配置杠杆的使用\t312
8.2.1\t宏观杠杆实例\t312
8.2.2\t微观杠杆实例\t313
8.3\t资产配置策略\t314
8.3.1\t最小方差组合简介\t314
8.3.2\t经典资产配置 B-L 模型\t322
8.4\t风险平价配置方法的理论与实践\t335
8.4.1\t风险平价配置方法的基本理念\t335
8.4.2\t风险平价配置理论介绍\t336
8.5\t资产风险的来源\t343
8.5.1\t市场风险\t343
8.5.2\t利率风险\t344
8.5.3\t汇率风险\t344
8.5.4\t流动性风险\t345
8.5.5\t信用风险\t345
8.5.6\t通货膨胀风险\t346
8.5.7\t营运风险\t346
8.6\t风险管理细则风险控制的 4 种基本方法\t347
8.6.1\t风险回避\t347
8.6.2\t损失控制\t348
8.6.3\t风险转移\t348
8.6.4\t风险保留\t348
8.7\t做好主观止损的技巧\t349
8.7.1\t没做好止损―中国石油\t349
8.7.2\t积极止损―中国外运\t350
第 9 章\t量化仓位决策\t354
9.1\t凯利公式基本概念\t354
9.1.1\t凯利公式的两个不同版本\t355
9.1.2\t凯利公式的使用方法\t355
9.1.3\t用凯利公式解答两个小例子\t356
9.1.4\t在实战中运用凯利公式的难点\t356
9.2\t凯利公式实验验证\t357
9.2.1\t收益率为正态分布时的凯利公式\t357
9.3\t等价鞅策略与反等价鞅策略\t367
9.3.1\t等价鞅策略定义及示例\t367
9.3.2\t反等价鞅策略定义及示例\t368
9.4\t购买股指期货 IF1905 被套心理分析及应对策略\t371
9.5\t期货趋势策略仓位管理方法\t372
9.5.1\t期货交易策略\t373
9.5.2\t仓位管理的八大方法\t373
9.6\t海龟交易法操作商品期货策略\t375
9.6.1\t海龟交易步骤回顾\t375
9.6.2\t需要用到的计算、判断函数\t376
9.6.3\t海龟交易回测\t378
9.6.4\t日线螺纹钢测试\t379
9.6.5\t测试不同商品在唐奇安通道 N 上的表现\t385
第 10 章\t机器学习与遗传算法\t393
10.1\t机器学习系统及策略\t393
10.1.1\t学习策略简介\t394
10.1.2\t学习策略分类\t394
10.2\t演绎推理及归纳推理规则\t396
10.2.1\t自动推理\t396
10.2.2\t演绎推理及示例\t396
10.2.3\t归纳推理及示例\t397
10.2.4\t自然演绎推理及示例\t399
10.3\t专家系统体系结构\t401
10.3.1\t专家系统的定义\t401
10.3.2\t专家系统的构成\t401
10.3.3\t专家系统的分类\t402
10.3.4\t专家系统的特点\t403
10.4\t遗传算法基本原理及应用\t404
10.4.1\t遗传算法简介与特点\t404
10.4.2\t基本遗传算法多层次框架图\t405
10.4.3\t遗传算法实施步骤\t406
10.4.4\t遗传算法应用\t406
10.5\t使用遗传算法筛选内嵌因子\t407
10.5.1\t首先加入 Python 包\t407
10.5.2\t设定时间回测范围\t409
10.5.3\t设置标准化过程\t410
10.5.4\t训练,测试集合的选择\t412
10.5.5\t评价指标\t413
10.5.6\t利用遗传算法改进过程\t414
第 11 章\t人工智能在量化投资策略中的应用\t420
11.1\t人工智能选股 Boosting 模型使用方法\t420
11.1.1\t对数据进行预处理―获取因子数据和股价涨跌数据\t420
11.1.2\t对数据进行去极值、中性化、标准化处理\t424
11.1.3\t模型数据准备\t428
11.2\tBoosting 模型因子合成\t430
11.2.1\t模型训练\t431
11.2.2\t模型结果分析\t437
11.2.3\t因子重要度分析\t438
11.3\t因子测试\t440
11.3.1\t载入因子文件\t440
11.3.2\t回测详情\t441
11.3.3\tBoosting 模型合成因子分组回测\t459
猜您喜欢