书籍详情
深度学习实践教程
作者:吴微 著
出版社:电子工业出版社
出版时间:2020-08-01
ISBN:9787121393969
定价:¥42.00
购买这本书可以去
内容简介
本书共分8章,内容包括深度学习基础、深度学习框架PyTorch的安装、PyTorch基础、线性回归和逻辑回归、全连接神经网络、卷积神经网络、循环神经网络及生成式对抗网络。本书首先从深度学习基础知识入手,引领读者动手搭建深度学习框架PyTorch,然后在PyTorch框架下实现深度学习中常用的网络模型。通过本书,读者可对深度学习有一个清晰的认识。本书中的程序均可在Windows系统中运行,不受是否具备GPU的限制。本书提供电子课件、源代码,读者可登录“华信教育资源网”(www.hxedu.com.cn)免费下载。书中每章都配有习题和实验,最后还附有参考答案。本书可作为高等学校本科数据科学与大数据、人工智能、机器人工程等专业深度学习相关课程的教材,也适合广大对深度学习有兴趣的读者自学使用。
作者简介
吴微,中国科学院沈阳自动化研究所博士后,副教授,美国普渡大学访问学者;参与编写《跨越软件设计师必备训练》、《跨越软考精讲精练》系列考试培训教程,共计100万字;2016年起承担本校深度学习算法及应用”本科课程的教学工作,具有丰富的深度学习教学经验。
目录
目 录
第1章 深度学习基础 1
1.1 人工智能、机器学习与深度学习 1
1.1.1 人工智能简介 1
1.1.2 机器学习简介 2
1.1.3 深度学习简介 3
1.2 深度学习的三大核心要素 4
1.3 神经元与深度神经网络 7
1.4 神经网络中常用的激励函数 9
1.5 深度学习的优势 13
1.6 常用的深度学习框架 15
本章小结 16
习题 16
第2章 深度学习框架PyTorch的安装 19
2.1 PyTorch介绍 19
2.2 Windows系统中PyTorch的配置 20
2.2.1 安装Python 20
2.2.2 PyTorch环境搭建 21
2.3 Linux系统中PyTorch的配置 22
2.3.1 安装虚拟机 23
2.3.2 Python环境配置 25
2.3.3 PyTorch环境搭建 25
2.4 PyTorch开发工具 26
2.4.1 IDLE 26
2.4.2 PyCharm 27
本章小结 34
习题 34
实验 35
第3章 PyTorch基础 36
3.1 Tensor的定义 36
3.2 Tensor的创建 37
3.3 Tensor的形状调整 39
3.4 Tensor的简单运算 40
3.5 Tensor的比较 41
3.6 Tensor的数理统计 42
3.7 Tensor与NumPy的互相转换 43
3.8 Tensor的降维和增维 44
3.9 Tensor的裁剪 46
3.10 Tensor的索引 46
3.11 把Tensor移到GPU上 48
本章小结 49
习题 49
实验 50
第4章 线性回归和逻辑回归 54
4.1 回归 54
4.2 线性回归 55
4.3 一元线性回归的代码实现 58
4.4 梯度及梯度下降法 62
4.4.1 梯度 62
4.4.2 梯度下降法 62
4.5 多元线性回归的代码实现 63
4.6 逻辑回归 65
4.6.1 逻辑回归 65
4.6.2 逻辑回归中的损失函数 66
4.6.3 逻辑回归的代码实现 66
本章小结 69
习题 69
实验 70
第5章 全连接神经网络 72
5.1 全连接神经网络概述 72
5.2 多分类问题 73
5.3 Softmax函数与交叉熵 74
5.4 反向传播算法 76
5.4.1 链式求导法则 76
5.4.2 反向传播算法实例 77
5.4.3 Sigmoid函数实例 77
5.5 计算机视觉工具包torchvision 78
5.6 全连接神经网络实现多分类 80
5.6.1 定义全连接神经网络 80
5.6.2 全连接神经网络识别MNIST手写数字 81
本章小结 85
习题 85
实验 87
第6章 卷积神经网络 88
6.1 前馈神经网络 88
6.2 卷积神经网络的原理 89
6.2.1 卷积层 91
6.2.2 池化层 94
6.3 卷积神经网络的代码实现 96
6.4 LeNet-5模型 99
6.4.1 LeNet-5模型的架构 99
6.4.2 CIFAR 10数据集 101
6.4.3 LeNet-5模型的代码实现 101
6.5 VGGNet模型 106
6.5.1 VGGNet模型简介 106
6.5.2 VGGNet模型的代码实现 107
6.6 ResNet模型 112
6.6.1 ResNet模型简介 112
6.6.2 ResNet模型残差学习单元的代码实现 113
本章小结 114
习题 114
实验 115
第7章 循环神经网络 119
7.1 循环神经网络概述 119
7.2 循环神经网络的原理 120
7.3 长短时记忆神经网络 122
7.3.1 长短时记忆神经网络的原理 122
7.3.2 长短时记忆神经网络实例1 125
7.3.3 长短时记忆神经网络实例2 129
本章小结 136
习题 136
实验 137
第8章 生成式对抗网络 138
8.1 生成式对抗网络概述 138
8.1.1 生成式对抗网络的原理 138
8.1.2 生成式对抗网络的代码实现 142
8.2 条件生成式对抗网络 150
8.3 最小二乘生成式对抗网络 151
本章小结 151
习题 151
实验 152
附录A 部分习题与实验参考答案 153
A.1 第1章习题与实验参考答案 153
A.2 第2章习题与实验参考答案 155
A.2.1 习题参考答案 155
A.2.2 实验参考答案 156
A.3 第3章习题与实验参考答案 156
A.3.1 习题参考答案 156
A.3.2 实验参考答案 156
A.4 第4章习题与实验参考答案 166
A.4.1 习题参考答案 166
A.4.2 实验参考答案 167
A.5 第5章习题与实验参考答案 175
A.5.1 习题参考答案 175
A.5.2 实验参考答案 175
A.6 第6章习题与实验参考答案 178
A.6.1 习题参考答案 178
A.6.2 实验参考答案 179
A.7 第7章习题与实验参考答案 192
A.7.1 习题参考答案 192
A.7.2 实验参考答案 193
A.8 第8章习题与实验参考答案 196
A.8.1 习题参考答案 196
A.8.2 实验参考答案 197
参考文献 212
第1章 深度学习基础 1
1.1 人工智能、机器学习与深度学习 1
1.1.1 人工智能简介 1
1.1.2 机器学习简介 2
1.1.3 深度学习简介 3
1.2 深度学习的三大核心要素 4
1.3 神经元与深度神经网络 7
1.4 神经网络中常用的激励函数 9
1.5 深度学习的优势 13
1.6 常用的深度学习框架 15
本章小结 16
习题 16
第2章 深度学习框架PyTorch的安装 19
2.1 PyTorch介绍 19
2.2 Windows系统中PyTorch的配置 20
2.2.1 安装Python 20
2.2.2 PyTorch环境搭建 21
2.3 Linux系统中PyTorch的配置 22
2.3.1 安装虚拟机 23
2.3.2 Python环境配置 25
2.3.3 PyTorch环境搭建 25
2.4 PyTorch开发工具 26
2.4.1 IDLE 26
2.4.2 PyCharm 27
本章小结 34
习题 34
实验 35
第3章 PyTorch基础 36
3.1 Tensor的定义 36
3.2 Tensor的创建 37
3.3 Tensor的形状调整 39
3.4 Tensor的简单运算 40
3.5 Tensor的比较 41
3.6 Tensor的数理统计 42
3.7 Tensor与NumPy的互相转换 43
3.8 Tensor的降维和增维 44
3.9 Tensor的裁剪 46
3.10 Tensor的索引 46
3.11 把Tensor移到GPU上 48
本章小结 49
习题 49
实验 50
第4章 线性回归和逻辑回归 54
4.1 回归 54
4.2 线性回归 55
4.3 一元线性回归的代码实现 58
4.4 梯度及梯度下降法 62
4.4.1 梯度 62
4.4.2 梯度下降法 62
4.5 多元线性回归的代码实现 63
4.6 逻辑回归 65
4.6.1 逻辑回归 65
4.6.2 逻辑回归中的损失函数 66
4.6.3 逻辑回归的代码实现 66
本章小结 69
习题 69
实验 70
第5章 全连接神经网络 72
5.1 全连接神经网络概述 72
5.2 多分类问题 73
5.3 Softmax函数与交叉熵 74
5.4 反向传播算法 76
5.4.1 链式求导法则 76
5.4.2 反向传播算法实例 77
5.4.3 Sigmoid函数实例 77
5.5 计算机视觉工具包torchvision 78
5.6 全连接神经网络实现多分类 80
5.6.1 定义全连接神经网络 80
5.6.2 全连接神经网络识别MNIST手写数字 81
本章小结 85
习题 85
实验 87
第6章 卷积神经网络 88
6.1 前馈神经网络 88
6.2 卷积神经网络的原理 89
6.2.1 卷积层 91
6.2.2 池化层 94
6.3 卷积神经网络的代码实现 96
6.4 LeNet-5模型 99
6.4.1 LeNet-5模型的架构 99
6.4.2 CIFAR 10数据集 101
6.4.3 LeNet-5模型的代码实现 101
6.5 VGGNet模型 106
6.5.1 VGGNet模型简介 106
6.5.2 VGGNet模型的代码实现 107
6.6 ResNet模型 112
6.6.1 ResNet模型简介 112
6.6.2 ResNet模型残差学习单元的代码实现 113
本章小结 114
习题 114
实验 115
第7章 循环神经网络 119
7.1 循环神经网络概述 119
7.2 循环神经网络的原理 120
7.3 长短时记忆神经网络 122
7.3.1 长短时记忆神经网络的原理 122
7.3.2 长短时记忆神经网络实例1 125
7.3.3 长短时记忆神经网络实例2 129
本章小结 136
习题 136
实验 137
第8章 生成式对抗网络 138
8.1 生成式对抗网络概述 138
8.1.1 生成式对抗网络的原理 138
8.1.2 生成式对抗网络的代码实现 142
8.2 条件生成式对抗网络 150
8.3 最小二乘生成式对抗网络 151
本章小结 151
习题 151
实验 152
附录A 部分习题与实验参考答案 153
A.1 第1章习题与实验参考答案 153
A.2 第2章习题与实验参考答案 155
A.2.1 习题参考答案 155
A.2.2 实验参考答案 156
A.3 第3章习题与实验参考答案 156
A.3.1 习题参考答案 156
A.3.2 实验参考答案 156
A.4 第4章习题与实验参考答案 166
A.4.1 习题参考答案 166
A.4.2 实验参考答案 167
A.5 第5章习题与实验参考答案 175
A.5.1 习题参考答案 175
A.5.2 实验参考答案 175
A.6 第6章习题与实验参考答案 178
A.6.1 习题参考答案 178
A.6.2 实验参考答案 179
A.7 第7章习题与实验参考答案 192
A.7.1 习题参考答案 192
A.7.2 实验参考答案 193
A.8 第8章习题与实验参考答案 196
A.8.1 习题参考答案 196
A.8.2 实验参考答案 197
参考文献 212
猜您喜欢