书籍详情

电力电子应用技术手册

电力电子应用技术手册

作者:[波兰] 海瑟姆·阿布鲁(Haitham Abu-Rub) 著

出版社:机械工业出版社

出版时间:2020-04-01

ISBN:9787111644644

定价:¥229.00

购买这本书可以去
内容简介
  《电力电子应用技术手册》共24章,分为三大部分:第壹部分由第1~5章组成,介绍了电力电子对新兴技术的影响;第二部分由第6~11章组成,介绍了分布式发电系统中的电力电子技术;第三部分由第12~24章组成,介绍了电力电子技术在运输及工业中的应用。 《电力电子应用技术手册》具有当代书籍的典型特征,并以开创性的方法讨论了作者们目前研究的几个方面,其中简洁的语言、易懂的插图十分适合高等院校电气工程、电力系统等专业的师生,以及相关行业的研究人员和工程技术人员阅读。
作者简介
暂缺《电力电子应用技术手册》作者简介
目录
译者序
原书序
原书前言
第1章 21世纪能源、全球变暖及电力电子的影响1
1.1简介1
1.2能源1
1.3环境污染:全球变暖问题3
1.3.1全球变暖影响5
1.3.2全球变暖问题的减缓方法6
1.4电力电子对能源系统的影响7
1.4.1节能7
1.4.2可再生能源系统7
1.4.3大容量储能13
1.5智能电网16
1.6纯电动和混合动力电动汽车17
1.6.1电池电动汽车和燃料电池电动汽车的比较18
1.7小结和展望19
参考文献21
第2章 当前能源面临的挑战:电力电子技术的贡献22
2.1简介22
2.2能源传输和分配系统23
2.2.1柔性交流输电系统(FACTS)23
2.2.2高压直流(HVDC)输电25
2.3可再生能源系统27
2.3.1风能29
2.3.2光伏能源29
2.3.3海洋能32
2.4运输系统33
2.5储能系统35
2.5.1技术35
2.5.2在输配电系统中的应用37
2.5.3在可再生能源系统中的应用37
2.5.4在运输系统中的应用37
2.6小结38
参考文献38
第3章 分布式发电与智能电网的概念与技术概述41
3.1简介41
3.2分布式发电装置与智能电网的要求42
3.3光伏发电43
3.4风电与小型水电机组45
3.5储能系统46
3.6电动汽车47
3.7微电网47
3.8智能电网问题48
3.9主动配电网管理49
3.10智能电网中的通信系统50
3.11高级量测体系和实时定价51
3.12智能电网的标准化52
参考文献53
第4章 电力半导体技术的新进展56
4.1简介56
4.2硅功率晶体管57
4.2.1功率MOSFET57
4.2.2IGBT58
4.2.3大功率器件60
4.3 SiC晶体管设计概述61
4.4 SiC器件的栅极和基极驱动64
4.5晶体管并联72
4.6应用概述79
4.7 GaN晶体管81
4.8小结83
参考文献83
第5章 交流链路通用功率变流器:一种用于可再生能源与交通设备的新型功率变流器87
5.1简介87
5.2交流链路通用功率变流器硬开关工作模式87
5.3交流链路通用功率变流器的软开关工作模式92
5.4软开关交流链路通用功率变流器的运行原理 92
5.5设计流程 100
5.6分析102
5.7应用104
5.8小结110
参考文献110
第6章 大功率电力电子技术:风力发电的关键技术112
6.1简介112
6.2风力发电的发展现状112
6.3风能转换114
6.4风电变流器118
6.5风电变流器的功率半导体122
6.6现代风电机组的控制和并网要求123
6.7风力发电系统的可靠性问题127
6.8小结129
参考文献129
第7章 光伏发电系统132
7.1简介132
7.2光伏发电系统的功率曲线和最大功率点134
7.3并网光伏发电系统的架构136
7.4光伏发电系统的并网控制150
7.5基于多电平逆变器的光伏发电系统最新进展160
7.6小结162
参考文献163
第8章 可再生能源系统可控性分析165
8.1简介165
8.2非线性系统的零状态166
8.2.1第一种方法167
8.2.2第二种方法167
8.3通过L型滤波器连接到电网的风力发电机的可控性168
8.4通过LCL型滤波器连接到电网的风力发电机的可控性172
8.5连接到电流源逆变器的光伏发电系统的可控性和稳定性分析183
8.6小结191
参考文献192
第9章 中小型可再生能源系统的通用运行控制1949.1分布式发电系统194
9.2与电网互动的分布式发电系统的功率变流器控制204
9.3辅助功能218
9.4小结223
参考文献224
第10章 双馈感应电机的特性与控制226
10.1双馈感应电机的基本原理226
10.2基于AC-DC-AC变流器的双馈感应电机矢量控制234
10.3基于双馈感应电机的风力发电系统254
参考文献263
第11章 分布式发电系统中的AC-DC-AC变流器264
11.1简介264
11.2 AC-DC-AC拓扑结构的脉宽调制策略271
11.3二极管钳位变流器的直流电容电压平衡276
11.4 AC-DC-AC变流器的控制算法286
11.5有功功率前馈控制的AC-DC-AC变流器295
11.5.1 AC-DC-AC变流器的功率响应时间常数分析296
11.5.2直流母线电容的能量296
11.6小结299
参考文献299
第12章 多电飞机中的电力电子学302
12.1简介302
12.2多电飞机303
12.2.1空客380电气系统305
12.2.2波音787电气系统305
12.3多电发动机308
12.3.1功率优化飞机309
12.4发电系统策略310
12.5电力电子与功率变换313
12.6配电系统316
12.6.1高压运行317
12.7小结319
参考文献319
第13章 电动汽车和插电式混合动力电动汽车321
13.1简介321
13.2纯电动车、混合动力电动汽车以及插电式混合动力电动汽车的结构322
13.2.1纯电动车322
13.2.2混合动力电动汽车322
13.2.3插电式混合动力电动汽车(PHEV)324
13.3 EV和PHEV充电基础设施325
13.3.1 EV/PHEV电池和充电方式325
13.4电力电子技术在EV和PHEV充电架构中的应用334
13.4.1充电设备335
13.4.2并网基础设施336
13.5 V2G和V2H概念337
13.5.1电网改造升级338
13.6 PEV充电的电力电子技术339
13.6.1安全注意事项339
13.6.2住宅型并网充电系统340
13.6.3公共型并网充电系统341
13.6.4分布式可再生能源的并网系统344
参考文献347
第14章 多电平变流器/逆变器拓扑结构与应用350
14.1简介350
14.2多电平变流器/逆变器基础351
14.2.1什么是多电平变流器/逆变器351
14.2.2三种典型多电平实现拓扑351
14.2.3多电平变流器/逆变器的广义拓扑及其衍生拓扑353
14.3串联式多电平逆变器及其应用358
14.3.1串联式多电平逆变器的实用优势358
14.3.2星接串联式多电平逆变器及其应用358
14.3.3角接串联式多电平逆变器及其应用361
14.3.4用于统一潮流控制的面对面连接串联式多电平逆变器364
14.4新兴应用与探讨366
14.4.1无磁性器件的直流变换366
14.4.2多电平模块化飞跨电容式直流变换器369
14.4.3 nX直流变换器371
14.4.4器件成本对比:飞跨电容变流器、MMCCC与nX直流变换器372
14.4.5零电流开关:MMCCC 373
14.4.6多电平变流器的容错性与可靠性377
14.5小结378
致谢379
参考文献379
第15章 多相矩阵变换器的拓扑和控制381
15.1简介381
15.2三相输入五相输出矩阵变换器381
15.2.1拓扑结构381
15.2.2控制算法382
15.3仿真和实验结果399
15.4五相输入三相输出矩阵变换器402
15.4.1拓扑结构402
15.4.2控制技术403
15.5示例结果 411
致谢413
参考文献413
第16章 基于升压电路的单相整流器功率因数调节器415
16.1简介415
16.2基本升压型PFC 416
16.2.1变换器拓扑结构和平均模型416
16.2.2稳态分析418
16.2.3控制电路418
16.2.4线性控制设计419
16.2.5仿真结果421
16.3不对称半桥升压型PFC 422
16.3.1CCM/CVM运行模式和平均模型建模423
16.3.2小信号平均模型和传递函数424
16.3.3控制系统设计425
16.3.4数字化实现和仿真结果427
16.4交错双升压型PFC430
16.4.1拓扑结构431
16.4.2开关时序432
16.4.3线性控制器设计和实验结果435
16.5小结436
参考文献437
第17章有源电力滤波器442
17.1简介442
17.2谐波442
17.3谐波的作用和负面影响443
17.4谐波国际标准443
17.5谐波类型444
17.5.1谐波电流源444
17.5.2谐波电压源445
17.6无源滤波器447
17.7功率定义447
17.7.1负载功率和功率因数447
17.7.2负载功率的定义448
17.7.33D空间电流坐标系中的功率因数定义448
17.8有源滤波器449
17.8.1电流源逆变器APF 450
17.8.2电压源逆变器APF 450
17.8.3并联有源电力滤波器450
17.8.4串联有源电力滤波器450
17.8.5 混合滤波器451
17.8.6大功率应用452
17.9 APF开关频率的选择方法452
17.10谐波电流提取技术453
17.10.1 P-Q理论453
17.10.2矢量叉积理论454
17.10.3基于P-Q-R旋转坐标系的瞬时功率理论455
17.10.4同步坐标系457
17.10.5自适应干扰消除技术457
17.10.6电容电压控制458
17.10.7时域相关函数技术458
17.10.8傅里叶级数辨识458
17.10.9其他方法459
17.11并联有源滤波器459
17.11.1并联APF建模460
17.11.2三相四线制并联APF465
17.12 串联有源电力滤波器467
17.13统一电能质量调节器468
致谢471
参考文献471
第18A章 带有电力电子的硬件在环仿真系统:强大的仿真工具475
18A.1背景475
18A.1.1硬件在环仿真系统概述475
18A.1.2“虚拟机”的应用475
18A.2功率性能提升476
18A.2.1顺序切换477
18A.2.2磁性续流控制 478
18A.2.3增加开关频率481
18A.3异步电机模型482
18A.3.1控制问题482
18A.3.2基于“逆变器”的电机模型482
18A.4实验结果和小结483
18A.4.1实验结果483
18A.4.2小结487
参考文献489
第18B章 模块化多电平换流器的实时仿真490
18B.1简介490
18B.1.1 MMC的工业应用490
18B.1.2电力电子换流器实时仿真的限制490
18B.1.3 MMC拓扑介绍492
18B.1.4 MMC仿真约束条件493
18B.2 MMC建模的选择及其局限性494
18B.2.1详细模型494
18B.2.2开关函数495
18B.2.3平均模型495
18B.3实时仿真的硬件技术496
18B.3.1基于DSP的顺序编程仿真496
18B.3.2基于FPGA的并行编程仿真496
18B.4用不同方法实现实时仿真器498
18B.4.1平均模型算法的顺序编程498
18B.4.2开关函数算法的并行编程500
18B.5小结502
参考文献502
第19章 基于模型预测的电机转速控制方法504
19.1简介504
19.2电机转速经典控制方案综述504
19.2.1电机模型505
19.2.2磁场定向控制505
19.2.3直接转矩控制506
19.3预测电流控制509
19.3.1预测模型509
19.3.2价值函数510
19.3.3预测算法510
19.3.4控制方案510
19.4预测转矩控制511
19.4.1预测模型511
19.4.2价值函数512
19.4.3预测算法512
19.4.4控制方案512
19.5使用矩阵变换器的预测转矩控制513
19.5.1预测模型513
19.5.2价值函数514
19.5.3预测算法514
19.5.4控制方案514
19.5.5无功功率的控制514
19.6预测转速控制516
19.6.1预测模型516
19.6.2价值函数517
19.6.3预测算法518
19.6.4控制方案518
19.7小结519
致谢519
参考文献519
第20章 电流源变流器电气传动系统522
20.1简介522
20.2传动系统结构523
20.3 CSC的PWM控制524
20.4 CSR的通用控制方法527
20.5异步和永磁同步电机的数学模型529
20.6异步电机的电流和电压控制531
20.6.1磁场定向控制(FOC)531
20.6.2电流多标量控制533
20.6.3电压多标量控制534
20.7永磁同步电机的电流和电压控制538
20.7.1 PMSM的电压多标量控制538
20.7.2内嵌式永磁电机的电流控制541
20.8 CSC驱动双馈电机的控制系统543
20.9小结546
参考文献547
第21章 PWM逆变器共模电压和轴承电流:原因、影响和抑制548
21.1简介548
21.1.1容性轴承电流551
21.1.2放电电流551
21.1.3轴承环流电流551
21.1.4转子接地电流553
21.1.5轴承电流的主要分量553
21.2异步电机共模参数的确定553
21.3抑制共模电流的无源方法555
21.3.1降低逆变器开关频率556
21.3.2共模电抗器556
21.3.3共模无源滤波器557
21.3.4共模变压器559
21.3.5带滤波器系统的半有源共模电流抑制560
21.3.6共模和差模集成式电抗器561
21.3.7电机结构和轴承保护环561
21.4用于减小共模电流的有源系统562
21.5减小共模电流的PWM修正算法563
21.5.1三个奇性有效矢量(3NPAV)564
21.5.2三个有效矢量调制(3AVM)565
21.5.3有效零电压控制(AZVC)565
21.5.4单零矢量空间矢量调制(SVM1Z)567
21.6小结568
参考文献569
第22章 大功率驱动系统在工业上的应用: 实例571
22.1简介571
22.2液化天然气工厂571
22.3燃气轮机:传统的压缩机驱动器572
22.3.1机组起动要求572
22.3.2温度对燃气轮机输出的影响573
22.3.3可靠性和持久性573
22.4变频驱动器对技术和经济的影响574
22.5大功率电机575
22.5.1新型大功率电机576
22.5.2无刷励磁同步电机578
22.6大功率电力驱动579
22.7开关器件580
22.7.1大功率半导体器件581
22.8大功率变流器的拓扑结构582
22.8.1 LCI583
22.8.2VSI583
22.8.3小结584
22.9多电平VSI拓扑584
22.9.1两电平逆变器584
22.9.2多电平逆变器585
22.10大功率电力驱动控制591
22.10.1 PWM方法592
22.11小结595
致谢595
参考文献595
第23章 单相电网侧变流器的调制与控制598
23.1简介598
23.2单相VSC调制技术599
23.2.1并联H-BC600
23.2.2 H-DCC603
23.2.3 H-FCC606
23.2.4比较611
23.3交流-直流单相VSC的控制616
23.3.1单相控制算法的分类617
23.3.2 dq同步坐标系下的电流控制——PI-CC 618
23.3.3abc静止参考坐标系电流控制——PR-CC 620
23.3.4控制器设计622
23.3.5有功功率前馈算法625
23.4小结627
参考文献628
第24章 阻抗源逆变器631
24.1多电平逆变器631
24.1.1无变压器技术631
24.1.2传统CMI或混合CMI631
24.1.3单级逆变器拓扑632
24.2准Z源逆变器633
24.2.1准Z源逆变器的原理633
24.2.2qZSI的控制方法635
24.2.3适用于带电池的光伏系统的qZSI 637
24.3基于qZSI的串联多电平光伏系统639
24.3.1工作原理639
24.3.2控制策略和电网同步641
24.4硬件实现643
24.4.1阻抗参数643
24.4.2控制系统644
致谢645
参考文献645
猜您喜欢

读书导航