书籍详情
自然语言处理从入门到实战
作者:胡盼盼 著
出版社:中国铁道出版社
出版时间:2020-06-01
ISBN:9787113266912
定价:¥79.80
购买这本书可以去
内容简介
为了帮助广大爱好自然语言处理(NaturalLanguageProcessing,NLP)技术的读者朋友入门此领域,本书阐述了自然语言处理概况、领域应用、相关处理工具包、相关的机器学习及深度学习模型、文本预处理及文本表征等基础知识,以及具体的自然语言处理任务,包括文本分类、关系抽取、知识图谱、文本摘要、序列标注、机器翻译和聊天系统,同时介绍了自然语言处理技术在学术界以及工业界的发展、应用现状,并为读者们提供了部分面试参考题目。 本书适合有一定的编程及机器学习基础,想入门自然语言处理,以及想系统了解或准备求职自然语言处理初级岗位的读者阅读。
作者简介
胡盼盼自然语言处理工程师,斯特拉斯堡大学计算机语言学硕士,曾任法国科学院(CNRS,Centre National de la Recherche Scientifique)算法研究员,负责过医疗知识图谱、聊天机器人、智能律师系统、文本生成系统等企业级核心项目。
目录
目录
第一部分了解自然语言处理
第1章自然语言处理初探
11自然语言处理概述
111自然语言处理早期发展史
112新世纪的里程碑事件
12自然语言处理的挑战
121词义消歧
122指代消解
123上下文理解
124语义与语用的不对等
13自然语言处理的应用领域
131医疗
132教育
133媒体
134金融
135法律
14自然语言处理的常见工具
141基础任务工具包
142科学计算及机器学习框架
143深度学习框架
本章小结
思考题
第二部分自然语言处理核心技术
第2章自然语言处理与机器学习
21逻辑回归
211逻辑回归基本原理
212逻辑回归在实践中的注意要点
213逻辑回归的优势与不足
22朴素贝叶斯
221朴素贝叶斯基本原理
222朴素贝叶斯的类型
223朴素贝叶斯的优势与不足
23Kmeans算法
231Kmeans算法基本原理
232Kmeans算法实践
233Kmeans算法的优势与不足
24决策树
241决策树的属性划分
242随机森林的基本原理
243随机森林在应用中的注意细节
25主成分分析
251梯度上升法解PCA
252协方差矩阵解PCA
253实战PCA
本章小结
思考题
第3章自然语言处理与神经网络
31神经网络初探
311神经元结构
312常见的激活函数
313误差反向传播算法
32常见的神经网络结构
321多层感知机
322循环神经网络的基本原理
323卷积神经网络的基本原理
324神经网络的优势与不足
33神经网络算法的改进与提升
331防止过拟合的方法
332训练速度与精度的提高方法
333注意力机制
本章小结
思考题
第三部分自然语言处理基本任务
第4章文本预处理
41文本预处理的基础项目
411文本规范化
412语义分析
413分词
414文本纠错
42关键词提取
421基于特征统计
422基于主题模型
423基于图模型
43数据不平衡的处理
431常见方法
432数据不平衡问题实战
本章小结
思考题
第5章文本的表示技术
51词袋模型
511基于频次的词袋模型
512基于TFIDF的词袋模型
513相关工具的使用
52Word2Vec词向量
521Word2Vec的基本原理
522Word2Vec模型细节及代码演示
523应用工具训练Word2Vec
53改进后的词表征
531GloVe模型
532FastText模型
533ELMo模型
54句向量
541基于词向量的平均
542沿用Word2Vec思想
543有监督方式
本章小结
思考题
第6章序列标注
61序列标注基础
611序列标注的应用场景
612基线方式
613序列标注任务的难点
62基于概率图的模型
621隐马尔科夫模型(HMM)
622最大熵马尔科夫模型(MEMM)
623条件随机场模型(CRF)
624天气预测实例
63基于深度学习的方式
631数据表征形式
632序列处理模型
本章小结
思考题
第7章关系抽取
71关系抽取基础
711关系抽取概述
712关系抽取的主要方法
713深度学习与关系抽取
714强化学习与关系抽取
72基于半监督的关系抽取模式:Snowball系统
721Patterns及Tuples的生成
722Patterns及Tuples的评估
723Snowball的实现细节
73关系抽取工具——DeepDive
731DeepDive概述
732DeepDive工作流程
733概率推断与因子图
本章小结
思考题
第四部分自然语言处理高级任务
第8章知识图谱
81知识图谱基本概念
811从语义网络到知识图谱
812知识的结构化、存储及查询
813几个开源的知识图谱
82知识图谱的关键构建技术
821本体匹配
822实体链接
823知识推理
83知识图谱应用
831反欺诈
832个性化推荐
833知识库问答
本章小结
思考题
第9章文本分类
91文本分类的常见方法
911机器学习
912模型融合
913深度学习
92文本分类的不同应用场景
921二分类
922多分类
923多标签多分类
93案例:搭建一款新闻主题分类器
931数据预处理
932训练与预测
933改进
本章小结
思考题
第10章文本摘要
101抽取式摘要
1011传统方法
1012基于深度学习的方法
1013抽取式摘要的训练数据问题
102生成式摘要
1021基础模型
1022前沿模型中的技巧
1023强化学习与生成式摘要
103案例:搭建网球新闻摘要生成器
1031基于词频统计的摘要生成器
1032基于图模型的摘要生成器
1033结果分析
本章小结
思考题
第11章机器翻译
111传统机器翻译
1111源起
1112基于规则
1113基于大规模语料
112统计机器翻译
1121相关流派
1122基于信源信道的统计机器翻译
1123案例:外星语的翻译实战
113神经机器翻译
1131基本原理
1132改进机制
1133前沿与挑战
本章小结
思考题
第12章聊天系统
121聊天系统的类型
1211闲聊式机器人
1212知识问答型机器人
1213任务型聊天机器人
122聊天系统的关键技术
1221检索技术
1222意图识别和词槽填充
1223对话管理
1224强化学习与多轮对话
123案例:闲聊机器人实战
1231技术概要
1232基本配置及数据预处理
1233闲聊机器人模型的搭建
1234模型训练、预测以及优化
本章小结
思考题
第五部分自然语言处理求职
第13章自然语言处理技术的现在、未来及择业
131自然语言处理组织及人才需求介绍
1311学术界
1312工业界
1313人才需求现状
132未来与自然语言处理
1321自然语言处理热点技术方向
1322自然语言处理的应用畅想
1323自然语言处理带来的行业冲击
133面试题
1331数据结构与算法
1332数学基础
1333机器学习与深度学习
1334自然语言处理专业
1335实际问题解决及技术领域见解
本章小结
思考题
附录A思考题参考答案
附录B面试题答案目录
第一部分了解自然语言处理
第1章自然语言处理初探
11自然语言处理概述
111自然语言处理早期发展史
112新世纪的里程碑事件
12自然语言处理的挑战
121词义消歧
122指代消解
123上下文理解
124语义与语用的不对等
13自然语言处理的应用领域
131医疗
132教育
133媒体
134金融
135法律
14自然语言处理的常见工具
141基础任务工具包
142科学计算及机器学习框架
143深度学习框架
本章小结
思考题
第二部分自然语言处理核心技术
第2章自然语言处理与机器学习
21逻辑回归
211逻辑回归基本原理
212逻辑回归在实践中的注意要点
213逻辑回归的优势与不足
22朴素贝叶斯
221朴素贝叶斯基本原理
222朴素贝叶斯的类型
223朴素贝叶斯的优势与不足
23Kmeans算法
231Kmeans算法基本原理
232Kmeans算法实践
233Kmeans算法的优势与不足
24决策树
241决策树的属性划分
242随机森林的基本原理
243随机森林在应用中的注意细节
25主成分分析
251梯度上升法解PCA
252协方差矩阵解PCA
253实战PCA
本章小结
思考题
第3章自然语言处理与神经网络
31神经网络初探
311神经元结构
312常见的激活函数
313误差反向传播算法
32常见的神经网络结构
321多层感知机
322循环神经网络的基本原理
323卷积神经网络的基本原理
324神经网络的优势与不足
33神经网络算法的改进与提升
331防止过拟合的方法
332训练速度与精度的提高方法
333注意力机制
本章小结
思考题
第三部分自然语言处理基本任务
第4章文本预处理
41文本预处理的基础项目
411文本规范化
412语义分析
413分词
414文本纠错
42关键词提取
421基于特征统计
422基于主题模型
423基于图模型
43数据不平衡的处理
431常见方法
432数据不平衡问题实战
本章小结
思考题
第5章文本的表示技术
51词袋模型
511基于频次的词袋模型
512基于TFIDF的词袋模型
513相关工具的使用
52Word2Vec词向量
521Word2Vec的基本原理
522Word2Vec模型细节及代码演示
523应用工具训练Word2Vec
53改进后的词表征
531GloVe模型
532FastText模型
533ELMo模型
54句向量
541基于词向量的平均
542沿用Word2Vec思想
543有监督方式
本章小结
思考题
第6章序列标注
61序列标注基础
611序列标注的应用场景
612基线方式
613序列标注任务的难点
62基于概率图的模型
621隐马尔科夫模型(HMM)
622最大熵马尔科夫模型(MEMM)
623条件随机场模型(CRF)
624天气预测实例
63基于深度学习的方式
631数据表征形式
632序列处理模型
本章小结
思考题
第7章关系抽取
71关系抽取基础
711关系抽取概述
712关系抽取的主要方法
713深度学习与关系抽取
714强化学习与关系抽取
72基于半监督的关系抽取模式:Snowball系统
721Patterns及Tuples的生成
722Patterns及Tuples的评估
723Snowball的实现细节
73关系抽取工具——DeepDive
731DeepDive概述
732DeepDive工作流程
733概率推断与因子图
本章小结
思考题
第四部分自然语言处理高级任务
第8章知识图谱
81知识图谱基本概念
811从语义网络到知识图谱
812知识的结构化、存储及查询
813几个开源的知识图谱
82知识图谱的关键构建技术
821本体匹配
822实体链接
823知识推理
83知识图谱应用
831反欺诈
832个性化推荐
833知识库问答
本章小结
思考题
第9章文本分类
91文本分类的常见方法
911机器学习
912模型融合
913深度学习
92文本分类的不同应用场景
921二分类
922多分类
923多标签多分类
93案例:搭建一款新闻主题分类器
931数据预处理
932训练与预测
933改进
本章小结
思考题
第10章文本摘要
101抽取式摘要
1011传统方法
1012基于深度学习的方法
1013抽取式摘要的训练数据问题
102生成式摘要
1021基础模型
1022前沿模型中的技巧
1023强化学习与生成式摘要
103案例:搭建网球新闻摘要生成器
1031基于词频统计的摘要生成器
1032基于图模型的摘要生成器
1033结果分析
本章小结
思考题
第11章机器翻译
111传统机器翻译
1111源起
1112基于规则
1113基于大规模语料
112统计机器翻译
1121相关流派
1122基于信源信道的统计机器翻译
1123案例:外星语的翻译实战
113神经机器翻译
1131基本原理
1132改进机制
1133前沿与挑战
本章小结
思考题
第12章聊天系统
121聊天系统的类型
1211闲聊式机器人
1212知识问答型机器人
1213任务型聊天机器人
122聊天系统的关键技术
1221检索技术
1222意图识别和词槽填充
1223对话管理
1224强化学习与多轮对话
123案例:闲聊机器人实战
1231技术概要
1232基本配置及数据预处理
1233闲聊机器人模型的搭建
1234模型训练、预测以及优化
本章小结
思考题
第五部分自然语言处理求职
第13章自然语言处理技术的现在、未来及择业
131自然语言处理组织及人才需求介绍
1311学术界
1312工业界
1313人才需求现状
132未来与自然语言处理
1321自然语言处理热点技术方向
1322自然语言处理的应用畅想
1323自然语言处理带来的行业冲击
133面试题
1331数据结构与算法
1332数学基础
1333机器学习与深度学习
1334自然语言处理专业
1335实际问题解决及技术领域见解
本章小结
思考题
附录A思考题参考答案
附录B面试题答案
第一部分了解自然语言处理
第1章自然语言处理初探
11自然语言处理概述
111自然语言处理早期发展史
112新世纪的里程碑事件
12自然语言处理的挑战
121词义消歧
122指代消解
123上下文理解
124语义与语用的不对等
13自然语言处理的应用领域
131医疗
132教育
133媒体
134金融
135法律
14自然语言处理的常见工具
141基础任务工具包
142科学计算及机器学习框架
143深度学习框架
本章小结
思考题
第二部分自然语言处理核心技术
第2章自然语言处理与机器学习
21逻辑回归
211逻辑回归基本原理
212逻辑回归在实践中的注意要点
213逻辑回归的优势与不足
22朴素贝叶斯
221朴素贝叶斯基本原理
222朴素贝叶斯的类型
223朴素贝叶斯的优势与不足
23Kmeans算法
231Kmeans算法基本原理
232Kmeans算法实践
233Kmeans算法的优势与不足
24决策树
241决策树的属性划分
242随机森林的基本原理
243随机森林在应用中的注意细节
25主成分分析
251梯度上升法解PCA
252协方差矩阵解PCA
253实战PCA
本章小结
思考题
第3章自然语言处理与神经网络
31神经网络初探
311神经元结构
312常见的激活函数
313误差反向传播算法
32常见的神经网络结构
321多层感知机
322循环神经网络的基本原理
323卷积神经网络的基本原理
324神经网络的优势与不足
33神经网络算法的改进与提升
331防止过拟合的方法
332训练速度与精度的提高方法
333注意力机制
本章小结
思考题
第三部分自然语言处理基本任务
第4章文本预处理
41文本预处理的基础项目
411文本规范化
412语义分析
413分词
414文本纠错
42关键词提取
421基于特征统计
422基于主题模型
423基于图模型
43数据不平衡的处理
431常见方法
432数据不平衡问题实战
本章小结
思考题
第5章文本的表示技术
51词袋模型
511基于频次的词袋模型
512基于TFIDF的词袋模型
513相关工具的使用
52Word2Vec词向量
521Word2Vec的基本原理
522Word2Vec模型细节及代码演示
523应用工具训练Word2Vec
53改进后的词表征
531GloVe模型
532FastText模型
533ELMo模型
54句向量
541基于词向量的平均
542沿用Word2Vec思想
543有监督方式
本章小结
思考题
第6章序列标注
61序列标注基础
611序列标注的应用场景
612基线方式
613序列标注任务的难点
62基于概率图的模型
621隐马尔科夫模型(HMM)
622最大熵马尔科夫模型(MEMM)
623条件随机场模型(CRF)
624天气预测实例
63基于深度学习的方式
631数据表征形式
632序列处理模型
本章小结
思考题
第7章关系抽取
71关系抽取基础
711关系抽取概述
712关系抽取的主要方法
713深度学习与关系抽取
714强化学习与关系抽取
72基于半监督的关系抽取模式:Snowball系统
721Patterns及Tuples的生成
722Patterns及Tuples的评估
723Snowball的实现细节
73关系抽取工具——DeepDive
731DeepDive概述
732DeepDive工作流程
733概率推断与因子图
本章小结
思考题
第四部分自然语言处理高级任务
第8章知识图谱
81知识图谱基本概念
811从语义网络到知识图谱
812知识的结构化、存储及查询
813几个开源的知识图谱
82知识图谱的关键构建技术
821本体匹配
822实体链接
823知识推理
83知识图谱应用
831反欺诈
832个性化推荐
833知识库问答
本章小结
思考题
第9章文本分类
91文本分类的常见方法
911机器学习
912模型融合
913深度学习
92文本分类的不同应用场景
921二分类
922多分类
923多标签多分类
93案例:搭建一款新闻主题分类器
931数据预处理
932训练与预测
933改进
本章小结
思考题
第10章文本摘要
101抽取式摘要
1011传统方法
1012基于深度学习的方法
1013抽取式摘要的训练数据问题
102生成式摘要
1021基础模型
1022前沿模型中的技巧
1023强化学习与生成式摘要
103案例:搭建网球新闻摘要生成器
1031基于词频统计的摘要生成器
1032基于图模型的摘要生成器
1033结果分析
本章小结
思考题
第11章机器翻译
111传统机器翻译
1111源起
1112基于规则
1113基于大规模语料
112统计机器翻译
1121相关流派
1122基于信源信道的统计机器翻译
1123案例:外星语的翻译实战
113神经机器翻译
1131基本原理
1132改进机制
1133前沿与挑战
本章小结
思考题
第12章聊天系统
121聊天系统的类型
1211闲聊式机器人
1212知识问答型机器人
1213任务型聊天机器人
122聊天系统的关键技术
1221检索技术
1222意图识别和词槽填充
1223对话管理
1224强化学习与多轮对话
123案例:闲聊机器人实战
1231技术概要
1232基本配置及数据预处理
1233闲聊机器人模型的搭建
1234模型训练、预测以及优化
本章小结
思考题
第五部分自然语言处理求职
第13章自然语言处理技术的现在、未来及择业
131自然语言处理组织及人才需求介绍
1311学术界
1312工业界
1313人才需求现状
132未来与自然语言处理
1321自然语言处理热点技术方向
1322自然语言处理的应用畅想
1323自然语言处理带来的行业冲击
133面试题
1331数据结构与算法
1332数学基础
1333机器学习与深度学习
1334自然语言处理专业
1335实际问题解决及技术领域见解
本章小结
思考题
附录A思考题参考答案
附录B面试题答案目录
第一部分了解自然语言处理
第1章自然语言处理初探
11自然语言处理概述
111自然语言处理早期发展史
112新世纪的里程碑事件
12自然语言处理的挑战
121词义消歧
122指代消解
123上下文理解
124语义与语用的不对等
13自然语言处理的应用领域
131医疗
132教育
133媒体
134金融
135法律
14自然语言处理的常见工具
141基础任务工具包
142科学计算及机器学习框架
143深度学习框架
本章小结
思考题
第二部分自然语言处理核心技术
第2章自然语言处理与机器学习
21逻辑回归
211逻辑回归基本原理
212逻辑回归在实践中的注意要点
213逻辑回归的优势与不足
22朴素贝叶斯
221朴素贝叶斯基本原理
222朴素贝叶斯的类型
223朴素贝叶斯的优势与不足
23Kmeans算法
231Kmeans算法基本原理
232Kmeans算法实践
233Kmeans算法的优势与不足
24决策树
241决策树的属性划分
242随机森林的基本原理
243随机森林在应用中的注意细节
25主成分分析
251梯度上升法解PCA
252协方差矩阵解PCA
253实战PCA
本章小结
思考题
第3章自然语言处理与神经网络
31神经网络初探
311神经元结构
312常见的激活函数
313误差反向传播算法
32常见的神经网络结构
321多层感知机
322循环神经网络的基本原理
323卷积神经网络的基本原理
324神经网络的优势与不足
33神经网络算法的改进与提升
331防止过拟合的方法
332训练速度与精度的提高方法
333注意力机制
本章小结
思考题
第三部分自然语言处理基本任务
第4章文本预处理
41文本预处理的基础项目
411文本规范化
412语义分析
413分词
414文本纠错
42关键词提取
421基于特征统计
422基于主题模型
423基于图模型
43数据不平衡的处理
431常见方法
432数据不平衡问题实战
本章小结
思考题
第5章文本的表示技术
51词袋模型
511基于频次的词袋模型
512基于TFIDF的词袋模型
513相关工具的使用
52Word2Vec词向量
521Word2Vec的基本原理
522Word2Vec模型细节及代码演示
523应用工具训练Word2Vec
53改进后的词表征
531GloVe模型
532FastText模型
533ELMo模型
54句向量
541基于词向量的平均
542沿用Word2Vec思想
543有监督方式
本章小结
思考题
第6章序列标注
61序列标注基础
611序列标注的应用场景
612基线方式
613序列标注任务的难点
62基于概率图的模型
621隐马尔科夫模型(HMM)
622最大熵马尔科夫模型(MEMM)
623条件随机场模型(CRF)
624天气预测实例
63基于深度学习的方式
631数据表征形式
632序列处理模型
本章小结
思考题
第7章关系抽取
71关系抽取基础
711关系抽取概述
712关系抽取的主要方法
713深度学习与关系抽取
714强化学习与关系抽取
72基于半监督的关系抽取模式:Snowball系统
721Patterns及Tuples的生成
722Patterns及Tuples的评估
723Snowball的实现细节
73关系抽取工具——DeepDive
731DeepDive概述
732DeepDive工作流程
733概率推断与因子图
本章小结
思考题
第四部分自然语言处理高级任务
第8章知识图谱
81知识图谱基本概念
811从语义网络到知识图谱
812知识的结构化、存储及查询
813几个开源的知识图谱
82知识图谱的关键构建技术
821本体匹配
822实体链接
823知识推理
83知识图谱应用
831反欺诈
832个性化推荐
833知识库问答
本章小结
思考题
第9章文本分类
91文本分类的常见方法
911机器学习
912模型融合
913深度学习
92文本分类的不同应用场景
921二分类
922多分类
923多标签多分类
93案例:搭建一款新闻主题分类器
931数据预处理
932训练与预测
933改进
本章小结
思考题
第10章文本摘要
101抽取式摘要
1011传统方法
1012基于深度学习的方法
1013抽取式摘要的训练数据问题
102生成式摘要
1021基础模型
1022前沿模型中的技巧
1023强化学习与生成式摘要
103案例:搭建网球新闻摘要生成器
1031基于词频统计的摘要生成器
1032基于图模型的摘要生成器
1033结果分析
本章小结
思考题
第11章机器翻译
111传统机器翻译
1111源起
1112基于规则
1113基于大规模语料
112统计机器翻译
1121相关流派
1122基于信源信道的统计机器翻译
1123案例:外星语的翻译实战
113神经机器翻译
1131基本原理
1132改进机制
1133前沿与挑战
本章小结
思考题
第12章聊天系统
121聊天系统的类型
1211闲聊式机器人
1212知识问答型机器人
1213任务型聊天机器人
122聊天系统的关键技术
1221检索技术
1222意图识别和词槽填充
1223对话管理
1224强化学习与多轮对话
123案例:闲聊机器人实战
1231技术概要
1232基本配置及数据预处理
1233闲聊机器人模型的搭建
1234模型训练、预测以及优化
本章小结
思考题
第五部分自然语言处理求职
第13章自然语言处理技术的现在、未来及择业
131自然语言处理组织及人才需求介绍
1311学术界
1312工业界
1313人才需求现状
132未来与自然语言处理
1321自然语言处理热点技术方向
1322自然语言处理的应用畅想
1323自然语言处理带来的行业冲击
133面试题
1331数据结构与算法
1332数学基础
1333机器学习与深度学习
1334自然语言处理专业
1335实际问题解决及技术领域见解
本章小结
思考题
附录A思考题参考答案
附录B面试题答案
猜您喜欢