书籍详情

环论中的反例(英文)

环论中的反例(英文)

作者:张小向,陈建龙 著

出版社:科学出版社

出版时间:1900-01-01

ISBN:9787030632784

定价:¥98.00

购买这本书可以去
内容简介
  环论是抽象代数学中的一个重要的分支。环的结构、分类与表示是环论中的具有根本性的研究课题。在环论的发展过程中,人们先后提出了很多种环的概念。作为抽象的代数概念,各种环类都需要具体的例子来支撑相关的理论。本书以环论中一些重要的环与模为研究对象,比较系统地介绍它们的定义、性质以及丰富的具有代表性的例子,特别是通过具体的例子展示一些相关的概念之间的差别。这些例子一方面为抽象的概念和现有的理论提供依据,同时为研究一些尚未解决的问题提供参考。
作者简介
暂缺《环论中的反例(英文)》作者简介
目录
Contents
Preface
Chapter 1 Basic Concepts 1
1.1 Rings and modules 1
1.1.1 Rings and their homomorphisms 1
1.1.2 Modules and their homomorphisms 4
1.1.3 Free, projective, injective and at modules 9
1.1.4 Covers and envelopes 11
1.2 Some constructions of rings 12
1.2.1 Formal power series and polynomials 12
1.2.2 Matrices 13
1.2.3 Morita context and formal triangular matrices 16
1.2.4 Direct products 17
1.2.5 Group rings 18
1.2.6 Localizations of commutative rings 19
Chapter 2 Noncommutative Rings 21
2.1 Asymmetry of noncommutative rings 21
2.1.1 Artinian ring and noetherian ring 21
2.1.2 Bass ring 22
2.1.3 B.ezout ring 23
2.1.4 Bounded ring 25
2.1.5 Coherent ring 26
2.1.6 Cononsingular ring 29
2.1.7 Continuous, quasi-continuous and CS ring 30
2.1.8 Distributive ring 31
2.1.9 Dual ring and quasi-dual ring 32
2.1.10 Duo ring 33
2.1.11 Finitely embedded ring 34
2.1.12 F-injective ring, FP-injective ring 35
2.1.13 Free ideal ring 37
2.1.14 FS ring and PS ring 38
2.1.15 Goldie ring 40
2.1.16 GP-injective ring 40
2.1.17 Harada ring and quasi-Harada ring 43
2.1.18 Hereditary ring and semihereditary ring 44
2.1.19 IN ring 45
2.1.20 Kasch ring and strong Kasch ring 46
2.1.21 McCoy ring 47
2.1.22 Min-injective ring and strong min-injective ring 48
2.1.23 Minsymmetric ring 49
2.1.24 Morphic ring 49
2.1.25 Nonsingular ring 51
2.1.26 Ore ring 51
2.1.27 PF ring 52
2.1.28 Primitive ring 53
2.1.29 P-injective ring 55
2.1.30 Principally quasi-Baer ring 55
2.1.31 Repetitive ring 56
2.1.32 RF ring 57
2.1.33 Self-injective ring 57
2.1.34 Serial ring 59
2.1.35 Simple-injective ring 60
2.1.36 Soc-injective ring 61
2.1.37 Strong rank condition 62
2.1.38 Strongly prime ring 63
2.1.39 V ring 64
2.1.40 Weakly regular ring 65
2.1.41 Zip ring 65
2.2 Weak commutativity 67
2.2.1 Abelian ring 67
2.2.2 Compressible ring 67
2.2.3 Directly-nite ring 68
2.2.4 Duo ring 69
2.2.5 Reversible ring 69
2.2.6 Semi-commutative ring 70
2.2.7 Symmetric ring 72
2.3 Remainders 74
2.3.1 IBN ring 74
2.3.2 McCoy ring 75
2.3.3 Ore ring 76
2.3.4 Stably-nite ring 76
Chapter 3 Hierarchies 78
3.1 Domain 78
3.2 Chain condition and-niteness condition 82
3.3 Armendariz ring 92
3.4 Weak commutativity 96
3.5 Von Neumann regularity 103
3.6 Baer ring 113
3.7 Injectivity 117
3.8 Continuity 128
3.9 Morphic ring 133
3.10 Clean ring 137
3.11 Hereditary ring 151
3.12 Primitive ring 154
3.13 V ring 161
3.14 Quasi-Frobenius ring 166
3.15 Involutive ring 172
3.15.1 Baer *-ring 172
3.15.2 *-clean ring 173
3.15.3 *-regular ring 175
3.15.4 Symmetric *-ring 177
Chapter 4 Extensions 179
4.1 Matrix ring 179
4.1.1 Armendariz ring 179
4.1.2 Clean ring 181
4.1.3 Dual ring 182
4.1.4 Goldie ring 183
4.1.5 Continuity and injectivity 184
4.1.6 McCoy ring 188
4.1.7 Morphic ring 188
4.1.8 Involutive ring 192
4.1.9 Zip ring 193
4.2 Polynomial ring 193
4.2.1 Armendariz ring 193
4.2.2 Baer ring and Rickart ring 193
4.2.3 Clean ring 195
4.2.4 Coherent ring 197
4.2.5 Goldie ring 199
4.2.6 McCoy ring 199
4.2.7 Morphic ring 200
4.2.8 Ore domain 201
4.2.9 Weak commutativity 202
4.2.10 Zip ring 203
4.3 Group ring 203
4.3.1 Baer ring and Rickart ring 203
4.3.2 Clean ring 204
4.3.3 Finite dimensional ring 205
4.3.4 Morphic ring 206
4.3.5 Prime ring and primitive ring 206
4.3.6 Von Neumann regular ring 207
4.3.7 Zip ring 208
4.4 Subring of direct product 209
Bibliography 216
Index 233
猜您喜欢

读书导航