书籍详情

P清华科技大讲堂:ython数据分析实战

P清华科技大讲堂:ython数据分析实战

作者:吕云翔,李伊琳,王肇一,张雅素

出版社:清华大学出版社

出版时间:2018-12-01

ISBN:9787302518389

定价:¥39.00

购买这本书可以去
内容简介
  使用Python进行数据分析是十分便利且高效的,因此它被认为是优秀的数据分析工具之一。本书从理论和实战两个角度对Python数据分析工具进行了介绍,并采用理论分析和Python实践相结合的形式,按照数据分析的基本步骤对数据分析的理论知识以及相应的Python库进行了详细的介绍,让读者在了解数据分析的基本理论知识的同时能够快速上手实现数据分析程序。本书适用于对数据分析有浓厚兴趣但不知从何下手的初学者,在阅读数据分析的基础理论知识的同时可以通过Python实现简单的数据分析程序,从而快速对数据分析的理论和实现两个层次形成一定的认知。
作者简介
暂缺《P清华科技大讲堂:ython数据分析实战》作者简介
目录
第1章数据分析是什么
1.1海量数据背后蕴藏的知识
1.2数据分析与数据挖掘的关系
1.3机器学习与数据分析的关系
1.4数据分析的基本步骤
1.5Python和数据分析
第2章Python——从了解Python开始
2.1Python的发展史
2.2Python及Pandas、scikitlearn、Matplotlib的安装
2.2.1Windows环境下Python的安装
2.2.2Mac环境下Python的安装
2.2.3Pandas、scikitlearn和Matplotlib的安装
2.2.4使用科学计算发行版Python进行快速安装
2.3Python基础知识
2.3.1缩进很重要
2.3.2模块化的系统
2.3.3注释
2.3.4语法
2.4重要的Python库
2.4.1Pandas
2.4.2scikitlearn
2.4.3Matplotlib
2.4.4其他
2.5Jupyter
第3章数据预处理——不了解数据一切都是空谈
3.1了解数据
3.2数据质量
3.2.1完整性
3.2.2一致性
3.2.3准确性
3.2.4及时性
3.3数据清洗
3.4特征工程
3.4.1特征选择
3.4.2特征构建
3.4.3特征提取
第4章NumPy——数据分析基础工具
4.1多维数组对象ndarray
4.1.1ndarray的创建
4.1.2ndarray的数据类型
4.2ndarray的索引、切片和迭代
4.3ndarray的shape的操作
4.4ndarray的基础操作
第5章Pandas——处理结构化数据
5.1基本数据结构
5.1.1Series
5.1.2DataFrame
5.2基于Pandas的Index对象的访问操作
5.2.1Pandas的Index对象
5.2.2索引的不同访问方式
5.3数学统计和计算工具
5.3.1统计函数: 协方差、相关系数、排序
5.3.2窗口函数
5.4数学聚合和分组运算
5.4.1agg()函数的聚合操作
5.4.2transform()函数的转换操作
5.4.3使用apply()函数实现一般的操作
第6章数据分析与知识发现——一些常用的方法
6.1分类分析
6.1.1逻辑回归
6.1.2线性判别分析
6.1.3支持向量机
6.1.4决策树
6.1.5K近邻
6.1.6朴素贝叶斯
6.2关联分析
6.2.1基本概念
6.2.2典型算法
6.3聚类分析
6.3.1K均值算法
6.3.2DBSCAN
6.4回归分析
6.4.1线性回归分析
6.4.2支持向量回归
6.4.3K近邻回归
第7章scikitlearn——实现数据的分析
7.1分类方法
7.1.1Logistic回归
7.1.2SVM
7.1.3Nearest neighbors
7.1.4Decision Tree
7.1.5随机梯度下降
7.1.6高斯过程分类
7.1.7神经网络分类(多层感知器)
7.1.8朴素贝叶斯示例
7.2回归方法
7.2.1最小二乘法
7.2.2岭回归
7.2.3Lasso
7.2.4贝叶斯岭回归
7.2.5决策树回归
7.2.6高斯过程回归
7.2.7最近邻回归
7.3聚类方法
7.3.1Kmeans
7.3.2Affinity propagation
7.3.3Meanshift
7.3.4Spectral clustering
7.3.5Hierarchical clustering
7.3.6DBSCAN
7.3.7Birch
第8章Matplotlib——交互式图表绘制
8.1基本布局对象
8.2图表样式的修改以及装饰项接口
8.3基础图表的绘制
8.3.1直方图
8.3.2散点图
8.3.3饼图
8.3.4柱状图
8.3.5折线图
8.3.6表格
8.3.7不同坐标系下的图像
8.4matplot3D
8.5Matplotlib与Jupyter结合
第9章实例: 科比职业生涯进球分析
9.1预处理
9.2分析科比的命中率
9.3分析科比的投篮习惯
第10章实例: 世界杯
10.1数据说明
10.2世界杯观众
10.3世界杯冠军
10.4世界杯参赛队伍与比赛
10.5世界杯进球
参考文献
猜您喜欢

读书导航