书籍详情
从Excel到Power BI:商业智能数据分析
作者:马世权 著
出版社:电子工业出版社
出版时间:2018-02-01
ISBN:9787121333248
定价:¥59.00
购买这本书可以去
内容简介
Microsoft Power BI是微软发布的一套商业分析工具。其功能整合了Excel中的Power Query、Power Pivot、Power View、Power Map这几大插件,并加入了社交分享、云服务、智能等功能。《从Excel到Power BI:商业智能数据分析》以Excel基础+Power BI为方法论,使用平易近人的语言讲解Power BI的技术知识,让零基础读者也能快速上手操作Power BI。 《从Excel到Power BI:商业智能数据分析》以读者的兴趣阅读为出发点,首先通过介绍可视化模块让读者全面体验Power BI的操作并掌握让数据飞起来的秘籍;然后再迈上一个大台阶,让读者学习Power Query数据查询功能,瞬间解决耗费时间且附加值低的工作;全力攻克Power BI的核心价值模块Power Pivot(数据建模)和DAX语言,让读者直达商业智能数据分析的上峰,站到Excel的肩膀上。 《从Excel到Power BI:商业智能数据分析》适合财务、管理、客服、物流、行政与人力资源、电商等人员,也适合零IT基础的读者。
作者简介
马世权 CPA Canada特许专业会计师 具有多年“世界500强”公司财务分析、风险管理经验 现任互联网金融行业运营分析经理 知乎专栏、公众号“Power BI大师”创始人
目录
目录
第1章 Power BI:让数据飞起来 1
事物的本质往往没有那么复杂,就好像浩瀚的宇宙,虽然流星稍纵即逝,但我们可以计算它的速度,虽然我们触摸不到银河系,但可以度量它的大小,这是因为我们掌握了天体运动的原理。同样,如果我们掌握了数据分析原理,就会发现那些所谓的高级分析、转化漏斗分析、全面预算,还有最近比较火的增长黑客 AARRR 模型等,不过是浩瀚的知识体系中原理应用的一个场景。本章会剥去数据分析神秘的“外衣”,以浅显的语言来讲述数据分析原理。
1.1 什么是 Power BI:未来已至 2
1.2 从 Excel 到 Power BI 的 5 个理由 9
1.3 数据分析原理:其实很简单 14
第2章Power BI 初体验及数据可视化 24
“Logic will get you from A to B. Imagination will take you everywhere.”
(逻辑会把你从 A 带到 B,而想象力可以带你去任何地方。)
数据可视化不仅是一门技术,也是一门艺术,同样的数据在不同人的手里,展现的效果会千差万别,掌握这门技能需要我们理解数据并具有想象力。
2.1 什么是数据可视化:视觉盛宴的开始 25
2.2 数据查询初体验:把数据装到“碗”里 27
2.3 数据建模和度量值:Excel 在 20 年来做的最好的事情 31
2.4 可视化及自定义视觉对象:将图表一网打尽 39
2.5 筛选器、层次、交互和分享:颠覆静态报表 51
2.6 可视化原则:平衡的艺术 61
第3章 数据查询:Power Query 69
大多数数据分析师都是用 80%的时间做基础的数据处理工作,而用不到 20%的时间做数据分析工作。借助强大的 Power Query 工具,可以解决这个工作时间分配失衡的问题,打造一个工作新常态:用 20%的时间做数据处理工作,用 80%的时间做数据分析工作。
3.1 告别“数据搬运工” 70
3.2 数据清洗 30 招:变形金刚 75
3.3 获取数据:从网页和数据库 97
3.4 追加与合并查询:你还在用 Vlookup 函数吗 103
3.5 多文件合并:复制和粘贴的杀手 109
3.6 Power Query 与精益管理思想 113
3.7 Power BI 的 M 语言与 DAX 语言之争 119
第4章 数据建模:Power Pivot 与 DAX 语言 123
“如果一件事情,你不能度量它,就不能增长它”。有人说,度量值是 Excel 在 20年来做得最好的一件事。作为一个数据分析工具, Power Pivot 和 DAX 语言才是 Power BI 的核心和灵魂。
4.1 基本概念:度量的力量 124
4.2 关系模型:建筑设计师 126
4.3 Power Pivot 与 Pivot:超越普通 129
4.4 度量值:将变革进行到底 133
4.5 计算列:温故而知新 138
第5章 DAX 语言入门:真正的颠覆从这里开始 142
DAX 什么是?DAX,Data Analysis Expression,即数据分析表达式。
本书选取了 DAX 公式中的 24 个核心公式,并且根据它们的使用频率由大到小分成了 3 个阶段。其中入门阶段的函数是最常用、核心的部分,攻克它们便可以制作一些小的数据分析模型。
5.1 DAX 语言:数据分析表达式 143
5.2 聚合函数:计算器 150
5.3 Calculate 函数:最强大的引擎 153
5.4 All 函数 156
5.5 Allexcept 和 Allselceted 函数兄弟 161
5.6 Filter 函数:高级筛选器 165
5.7 理解上下文:DAX 语言学习里程碑 173
第6章 DAX 语言进阶:最简单也是最好用的 184
我们可以把 DAX 当作一门语言来学习,也可以把它当作 Excel 公式来看,因为它们非常相似,而且大部分函数都是通用的。这也会让你从传统的 Excel 转到现代的Power BI 更容易,相对学习成本更低。
初阶函数的学习难度较小,与 Excel 函数很像,可以说是 Excel 函数的扩展。
6.1 Divide 函数:安全除法 185
6.2 If/Switch 函数:逻辑判断 187
6.3 关系函数:Related、Relatedtable 和 Lookupvalue 188
6.4 Time Intelligence 函数:时间智能函数 192
6.5 日历表的使用 200
6.6 分组的技巧 205
6.7 度量值的收纳盒 210
第7章 DAX 语言高阶:进击的数字大厨 213
高阶函数的学习相对前两个阶段要更难,然而有了前两个阶段的学习基础,它们不过是另一个小山头。当你完成了这 3 个阶段共 24 个函数的学习,就好比掌握了太极拳的 24 个精髓招式,将它们组合起来运用自如后就可以达到以不变应万变的境界。这些函数足以让你应对 80%以上的数据分析需求。
7.1 Values 函数:不重复值 214
7.2 Hasonevalue 函数:只有一个值 217
7.3 SumX 函数:掌握 X 类函数 218
7.4 Earlier 函数:当前行 221
7.5 RankX 和 TopN 函数:排名 226
7.6 辅助表:巧妙的助攻 231
7.7 VAR/Return 函数:录音机 241
7.8 DAX:用作查询的语言 247
7.9 取长补短:Excel + Power BI = Better Together 256
后记 261
第1章 Power BI:让数据飞起来 1
事物的本质往往没有那么复杂,就好像浩瀚的宇宙,虽然流星稍纵即逝,但我们可以计算它的速度,虽然我们触摸不到银河系,但可以度量它的大小,这是因为我们掌握了天体运动的原理。同样,如果我们掌握了数据分析原理,就会发现那些所谓的高级分析、转化漏斗分析、全面预算,还有最近比较火的增长黑客 AARRR 模型等,不过是浩瀚的知识体系中原理应用的一个场景。本章会剥去数据分析神秘的“外衣”,以浅显的语言来讲述数据分析原理。
1.1 什么是 Power BI:未来已至 2
1.2 从 Excel 到 Power BI 的 5 个理由 9
1.3 数据分析原理:其实很简单 14
第2章Power BI 初体验及数据可视化 24
“Logic will get you from A to B. Imagination will take you everywhere.”
(逻辑会把你从 A 带到 B,而想象力可以带你去任何地方。)
数据可视化不仅是一门技术,也是一门艺术,同样的数据在不同人的手里,展现的效果会千差万别,掌握这门技能需要我们理解数据并具有想象力。
2.1 什么是数据可视化:视觉盛宴的开始 25
2.2 数据查询初体验:把数据装到“碗”里 27
2.3 数据建模和度量值:Excel 在 20 年来做的最好的事情 31
2.4 可视化及自定义视觉对象:将图表一网打尽 39
2.5 筛选器、层次、交互和分享:颠覆静态报表 51
2.6 可视化原则:平衡的艺术 61
第3章 数据查询:Power Query 69
大多数数据分析师都是用 80%的时间做基础的数据处理工作,而用不到 20%的时间做数据分析工作。借助强大的 Power Query 工具,可以解决这个工作时间分配失衡的问题,打造一个工作新常态:用 20%的时间做数据处理工作,用 80%的时间做数据分析工作。
3.1 告别“数据搬运工” 70
3.2 数据清洗 30 招:变形金刚 75
3.3 获取数据:从网页和数据库 97
3.4 追加与合并查询:你还在用 Vlookup 函数吗 103
3.5 多文件合并:复制和粘贴的杀手 109
3.6 Power Query 与精益管理思想 113
3.7 Power BI 的 M 语言与 DAX 语言之争 119
第4章 数据建模:Power Pivot 与 DAX 语言 123
“如果一件事情,你不能度量它,就不能增长它”。有人说,度量值是 Excel 在 20年来做得最好的一件事。作为一个数据分析工具, Power Pivot 和 DAX 语言才是 Power BI 的核心和灵魂。
4.1 基本概念:度量的力量 124
4.2 关系模型:建筑设计师 126
4.3 Power Pivot 与 Pivot:超越普通 129
4.4 度量值:将变革进行到底 133
4.5 计算列:温故而知新 138
第5章 DAX 语言入门:真正的颠覆从这里开始 142
DAX 什么是?DAX,Data Analysis Expression,即数据分析表达式。
本书选取了 DAX 公式中的 24 个核心公式,并且根据它们的使用频率由大到小分成了 3 个阶段。其中入门阶段的函数是最常用、核心的部分,攻克它们便可以制作一些小的数据分析模型。
5.1 DAX 语言:数据分析表达式 143
5.2 聚合函数:计算器 150
5.3 Calculate 函数:最强大的引擎 153
5.4 All 函数 156
5.5 Allexcept 和 Allselceted 函数兄弟 161
5.6 Filter 函数:高级筛选器 165
5.7 理解上下文:DAX 语言学习里程碑 173
第6章 DAX 语言进阶:最简单也是最好用的 184
我们可以把 DAX 当作一门语言来学习,也可以把它当作 Excel 公式来看,因为它们非常相似,而且大部分函数都是通用的。这也会让你从传统的 Excel 转到现代的Power BI 更容易,相对学习成本更低。
初阶函数的学习难度较小,与 Excel 函数很像,可以说是 Excel 函数的扩展。
6.1 Divide 函数:安全除法 185
6.2 If/Switch 函数:逻辑判断 187
6.3 关系函数:Related、Relatedtable 和 Lookupvalue 188
6.4 Time Intelligence 函数:时间智能函数 192
6.5 日历表的使用 200
6.6 分组的技巧 205
6.7 度量值的收纳盒 210
第7章 DAX 语言高阶:进击的数字大厨 213
高阶函数的学习相对前两个阶段要更难,然而有了前两个阶段的学习基础,它们不过是另一个小山头。当你完成了这 3 个阶段共 24 个函数的学习,就好比掌握了太极拳的 24 个精髓招式,将它们组合起来运用自如后就可以达到以不变应万变的境界。这些函数足以让你应对 80%以上的数据分析需求。
7.1 Values 函数:不重复值 214
7.2 Hasonevalue 函数:只有一个值 217
7.3 SumX 函数:掌握 X 类函数 218
7.4 Earlier 函数:当前行 221
7.5 RankX 和 TopN 函数:排名 226
7.6 辅助表:巧妙的助攻 231
7.7 VAR/Return 函数:录音机 241
7.8 DAX:用作查询的语言 247
7.9 取长补短:Excel + Power BI = Better Together 256
后记 261
猜您喜欢