书籍详情
弹性力学变分原理引论
作者:鲍荣浩,徐博侯 著
出版社:浙江大学出版社
出版时间:2017-04-01
ISBN:9787308167406
定价:¥32.00
购买这本书可以去
内容简介
《弹性力学变分原理引论/浙江大学理学丛书》在简要介绍变分法的基础上,介绍了弹性力学各种变分原理,包括经典变分原理、广义变分原理,以及与热、电、磁等多场耦合的弹性力学变分原理。《弹性力学变分原理引论/浙江大学理学丛书》着重介绍这些变分原理在力学中的应用,如用变分原理推导各种梁和板的近似理论,利用变分的直接方法,给出求解弹性力学问题的各种数值方法,以及变分方法在结构振动和稳定性分析中的应用。《弹性力学变分原理引论/浙江大学理学丛书》适用于作为研究生“弹性力学变分原理”课程的教材或教学参考书。
作者简介
鲍荣浩, 1986年毕业于浙江大学力学系,1995年获浙江大学固体力学专业博士学位。1997年被评为副教授。曾赴香港科技大学、悉尼大学及澳大利亚新南威尔士大学访问研究。从事过地理信息系统、
目录
第1章 泛函和变分
1.1 引言
1.2 泛函
1.3 自变函数的变分
1.4 泛函的变分
1.5 泛函变分的性质
1.6 各种泛函的变分
第2章 泛函的极值
2.1 函数的极值
2.2 泛函的极值
2.3 泛函的条件极值问题
2.4 变分问题中的边界条件
2.5 哈密尔顿(Hamilton)原理
第3章 弹性力学经典变分原理
3.1 弹性力学基础
3.2 一个重要的恒等式
3.3 最小势能原理
3.4 最小余能原理
3.5 杆的自由扭转
3.6 弹性力学最小势能原理和最小余能原理的比较
第4章 弹性力学广义变分原理
4.1 两类变量的广义势能原理
4.2 两类变量的广义余能原理
4.3 两类变量广义变分原理的驻值性质
4.4 三类变量的广义变分原理
4.5 广义变分原理历史简介
第5章 变分原理在结构力学中应用
5.1 梁弯曲的基本方程
5.2 梁弯曲的变分原理
5.3 两个广义位移的梁
5.4 薄板弯曲问题
5.5 薄板弯曲的最小势能原理
5.6 中厚板的弯曲
5.7 讨论
第6章 电、磁、热弹性材料的变分原理
6.1 勒让德变换和内能
6.2 压电材料的变分原理
6.3 电磁弹性材料的变分原理
6.4 热弹性材料的变分原理
6.5 热弹性材料的本构关系
第7章 变分问题的直接方法
7.1 里兹方法(Ritz)
7.2 康托罗维奇法(Kantorovich)
7.3 伽辽金法(Galerkin)
7.4 有限元法
7.5 有限元法的收敛性
7.6 应力杂交元
第8章 特征值问题的变分原理
8.1 斯图姆-刘维尔(Sturm-Liouville)微分方程与特征值问题
8.2 斯图姆-刘维尔特征值问题的瑞利(Rayleigh)变分原理
8.3 特征值问题的瑞利-里兹(Rayleigh-Ritz)法
8.4 一般线性微分算子的特征值问题
8.5 结构的稳定性
8.6 求结构固有振动频率的变分方法
附录
A1 哈密尔顿(Hamilton)算子
A2 弹性力学基础
A3 内积空间和线性算子的变分反问题
A4 结构的稳定性
参考文献
1.1 引言
1.2 泛函
1.3 自变函数的变分
1.4 泛函的变分
1.5 泛函变分的性质
1.6 各种泛函的变分
第2章 泛函的极值
2.1 函数的极值
2.2 泛函的极值
2.3 泛函的条件极值问题
2.4 变分问题中的边界条件
2.5 哈密尔顿(Hamilton)原理
第3章 弹性力学经典变分原理
3.1 弹性力学基础
3.2 一个重要的恒等式
3.3 最小势能原理
3.4 最小余能原理
3.5 杆的自由扭转
3.6 弹性力学最小势能原理和最小余能原理的比较
第4章 弹性力学广义变分原理
4.1 两类变量的广义势能原理
4.2 两类变量的广义余能原理
4.3 两类变量广义变分原理的驻值性质
4.4 三类变量的广义变分原理
4.5 广义变分原理历史简介
第5章 变分原理在结构力学中应用
5.1 梁弯曲的基本方程
5.2 梁弯曲的变分原理
5.3 两个广义位移的梁
5.4 薄板弯曲问题
5.5 薄板弯曲的最小势能原理
5.6 中厚板的弯曲
5.7 讨论
第6章 电、磁、热弹性材料的变分原理
6.1 勒让德变换和内能
6.2 压电材料的变分原理
6.3 电磁弹性材料的变分原理
6.4 热弹性材料的变分原理
6.5 热弹性材料的本构关系
第7章 变分问题的直接方法
7.1 里兹方法(Ritz)
7.2 康托罗维奇法(Kantorovich)
7.3 伽辽金法(Galerkin)
7.4 有限元法
7.5 有限元法的收敛性
7.6 应力杂交元
第8章 特征值问题的变分原理
8.1 斯图姆-刘维尔(Sturm-Liouville)微分方程与特征值问题
8.2 斯图姆-刘维尔特征值问题的瑞利(Rayleigh)变分原理
8.3 特征值问题的瑞利-里兹(Rayleigh-Ritz)法
8.4 一般线性微分算子的特征值问题
8.5 结构的稳定性
8.6 求结构固有振动频率的变分方法
附录
A1 哈密尔顿(Hamilton)算子
A2 弹性力学基础
A3 内积空间和线性算子的变分反问题
A4 结构的稳定性
参考文献
猜您喜欢