书籍详情

图像处理的几何变分与多尺度方法

图像处理的几何变分与多尺度方法

作者:柳婵娟,邹海林,钱旭

出版社:清华大学出版社

出版时间:2016-07-01

ISBN:9787302433194

定价:¥49.00

购买这本书可以去
内容简介
  本书运用泛函分析、小波多尺度分析、几何变分法、偏微分方程和优化方法等理论,结合图像几何结构特征和人的视觉系统特性,对图像去噪与复原、图像增强等问题进行分析和探讨。研究非线性扩散模型阈值参数和时间估计与优化问题;将基于梯度的图像频率概念引入全变分,研究基于图像梯度频率的全变分正则化图像去噪与复原问题;将张量理论与全变分正则化方法结合,提出基于张量投票与全变分正则化结合的纹理图像去噪与复原模型;将小波变换局部化特性引入图像扩散滤波,研究基于小波多尺度分析的图像非线性扩散滤波与增强问题。本书适合作为高等院校电子信息类和计算机类专业高年级本科生、研究生的教学用书,同时,可作为相关专业领域人员学习数字图像处理的参考用书。本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
作者简介
暂缺《图像处理的几何变分与多尺度方法》作者简介
目录
第1章绪论1
1.1数字图像处理技术概述1
1.2变分与偏微分方程理论在图像处理中的应用及研究现状6
1.2.1基于变分与偏微分方程的图像去噪7
1.2.2基于变分与偏微分方程的图像分割11
1.2.3基于变分与偏微分方程的图像修复14
1.2.4基于变分与偏微分方程的图像增强17
1.2.5基于变分与偏微分方程的图像放大18
参考文献19第2章图像处理的泛函及几何变分理论基础27
2.1实分析与泛函分析基础27
2.2最优化理论与凸分析28
2.3有界变差函数空间31
2.4反问题与正则化34
2.4.1问题适定性34
2.4.2反问题和病态35
2.4.3不适定问题36
2.4.4正则化39
2.5曲线与曲面几何40
2.5.1R2曲线的几何性质40
2.5.2R3曲面的几何性质42
2.6图像空间46
2.7变分法及其基本引理47
2.7.1变分法基本引理47
2.7.2偏微分方程51
2.7.3梯度下降流法53
参考文献54/图像处理的几何变分与多尺度方法目录/第3章图像非线性扩散滤波55
3.1引言55
3.2图像中的噪声及特点56
3.3各向同性扩散59
3.4各向异性扩散62
3.4.1PM扩散模型64
3.4.2CLMC模型69
3.4.3林石算子69
3.4.4MCM模型70
3.4.5张量扩散模型71
3.4.6高阶偏微分方程模型72
3.4.7其他改进模型73
3.5PM方程参数的估计与优化74
3.5.1梯度阈值估计75
3.5.2扩散终止时间估计79
3.5.3数值实验及结果分析81
3.6基于小波变换的图像非线性扩散滤波83
3.6.1带有保真项的非线性小波扩散模型83
3.6.2数值实验与结果分析84
3.7本章小结87
参考文献87第4章全变分正则化图像去噪与复原90
4.1引言90
4.2全变分正则化图像去噪与复原91
4.2.1TVL2模型92
4.2.2ROF TV模型92
4.2.3TVLp模型95
4.2.4TVG模型96
4.2.5TVL1模型97
4.2.6其他高阶TV模型100
4.2.7基于TV的乘性噪声去除106
4.3基于图像频率的全变分正则化去噪107
4.3.1基于梯度的图像频率107
4.3.2基于图像频率的全变分正则化去噪108
4.3.3模型数值计算109
4.3.4数值实验及结果分析110
4.4基于图像频率的变分正则化去噪模型的改进114
4.5小波域图像复原变分正则化方法119
4.5.1引言119
4.5.2小波模值及权重测度120
4.5.3基于小波域的图像复原模型121
4.5.4小波基的选择122
4.5.5实验结果分析124
4.6本章小结129
参考文献130第5章基于结构张量的图像扩散滤波135
5.1引言135
5.2结构张量136
5.3扩散张量138
5.3.1边缘增强张量扩散139
5.3.2相干增强张量扩散140
5.4基于张量投票的纹理图像去噪与复原141
5.4.1图像局部结构特征相干性函数141
5.4.2张量投票与全变分正则化图像去噪与复原142
5.4.3数值仿真实验143
5.5本章小结148
参考文献149第6章基于变分偏微分方程的图像增强152
6.1引言152
6.2空间域增强153
6.2.1直方图均衡化153
6.2.2直方图规定化156
6.3频域增强158
6.3.1频域滤波158
6.3.2多尺度域增强162
6.4基于变分偏微分方程的图像增强164
6.4.1基于变分偏微分方程的直方图均衡化图像增强164
6.4.2基于变分框架的Retinex图像增强165
6.4.3梯度场图像增强167
6.4.4基于非线性扩散的图像增强168
6.5基于多尺度和变分的图像增强170
6.5.1图像局部结构小波能谱描述算子170
6.5.2数值实验及结果分析171
6.5.3小波域图像增强WFAB模型174
6.5.4数值实验及结果分析175
6.6本章小结177
参考文献177第7章总结与展望181
7.1研究工作总结181
7.2未来研究工作展望183附录A本书中使用的数学符号185附录B本书中使用的缩略词表187
猜您喜欢

读书导航