书籍详情
模式识别中的二型模糊图模型
作者:曾嘉,刘志强
出版社:清华大学出版社
出版时间:2015-06-01
ISBN:9787302368908
定价:¥79.00
购买这本书可以去
内容简介
《模式识别中的二型模糊图模型》着重讨论了如何融合二型模糊集合理论与概率图模型来解决现实世界中的模式识别问题,例如语音识别、手写体汉字识别、主题建模和人体动作识别等应用。本书覆盖了二型模糊集合理论和概率图模型理论的最新进展,同时也详尽地介绍了融合两大理论的框架。本书不但适用于模糊逻辑和模式识别领域的研究生、研究学者和工业实践者,同时也可以作为没有上述研究背景的研究学者的宝贵参考读物。本书作者曾嘉博士是苏州大学计算机科学与技术学院教授,刘志强博士是香港城市大学创意媒体学院教授。
作者简介
暂缺《模式识别中的二型模糊图模型》作者简介
目录
1 Introduction
1.1 Pattern Recognition
1.2 Uncertainties
1.3 Book Overview
References
2 Probabilistic Graphical Models
2.1 The Labeling Problem
2.2 Markov Properties
2.3 The Bayesian Decision Theory
2.3.1 Descriptive and Generative Models
2.3.2 Statistical-Structural Pattern Recognition
2.4 Summary
References
3 Type-2 Fuzzy Sets for Pattern Recognition
3.1 Type-2 Fuzzy Sets
3.2 Operations on Type-2 Fuzzy Sets
3.3 Type-2 Fuzzy Logic Systems
3.3.1 Fuzzifier
3.3.2 Rule Base and Inference
3.3.3 Type Reducer and Defuzzifier
3.4 Pattern Recognition Using Type-2 Fuzzy Sets
3.5 The Type-2 Fuzzy Bayesian Decision Theory
3.6 Summary
References
4 Type-2 Fuzzy Gaussian Mixture Models
4.1 Gaussian Mixture Models
4.2 Type-2 Fuzzy Gaussian Mixture Models
4.3 Multi-category Pattern Classification
References
5 Type-2 Fuzzy Hidden Moarkov Models
5.1 Hidden Markov Models
5.1.1 The Forward-Backward Algorithm
5.1.2 The Viterbi Algorithm
5.1.3 The Baum-Welch Algorithm
5.2 Type-2 Fuzzy Hidden Markov Models
5.2.1 Elements of a Type-2 FHMM
5.2.2 The Type-2 Fuzzy Forward-Backward Algorithm
5.2.3 The Type-2 Fuzzy Viterbi Algorithm
5.2.4 The Learning Algorithm
5.2.5 Type-Reduction and Defuzzification
5.2.6 Computational Complexity
5.3 Speech Recognition
5.3.1 Automatic Speech Recognition System
5.3.2 Phoneme Classification
5.3.3 Phoneme Recognition
5.4 Summary
References
6 Type-2 Fuzzy Markov Random Fields
6.1 Markov Random Fields
6.1.1 The Neighborhood System
6.1.2 Clique Potentials
6.1.3 Relaxation Labeling
6.2 Type-2 Fuzzy Markov Random Fields
6.2.1 The Type-2 Fuzzy Relaxation Labeling
6.2.2 Computational Complexity
6.3 Stroke Segmentation of Chinese Character
6.3.1 Gabor Filters-Based Cyclic Observations
6.3.2 Stroke Segmentation Using MRFs
6.3.3 Stroke Extraction of Handprinted Chinese Characters.
6.3.4 Stroke Extraction of Cursive Chinese Characters
6.4 Handwritten Chinese Character Recognition
6.4.1 MRFs for Character Structure Modeling
6.4.2 Handwritten Chinese Character Recognition (HCCR).
6.4.3 Experimental Results
6.5 Summary
References
7 Type-2 Fuzzy Topic Models
7.1 Latent Dirichlet Allocation
7.1.1 Factor Graph for the Collapsed LDA
7.1.2 Loopy Belief Propagation (BP)
7.1.3 An Alternative View of BP
7.1.4 Simplified BP (siBP)
7.1.5 Relationship to Previous Algorithms
7.1.6 Belief Propagation for ATM
7.1.7 Belief Propagation for RTM
7.2 Speedup Topic Modeling
7.2.1 Fast Topic Modeling Techniques
7.2.2 Residual Belief Propagation
7.2.3 Active Belief Propagation
7.3 Type-2 Fuzzy Latent Dirichlet Allocation
7.3.1 Topic Models
7.3.2 Type-2 Fuzzy Topic Models (T2 FTMs)
7.4 Topic Modeling Performance
7.4.1 Belief Propagation
7.4.2 Residual Belief Propagation
7.4.3 Active Belief Propagation
7.5 Human Action Recognition
7.5.1 Feature Extraction and Vocabulary Formation
7.5.2 Results on KTH Data Set
References
8 Conclusions and Future Work
8.1 Conclusions
8.2 Future Works
Errata to: Type-2 Fuzzy Graphical Models for Pattern Recognition
1.1 Pattern Recognition
1.2 Uncertainties
1.3 Book Overview
References
2 Probabilistic Graphical Models
2.1 The Labeling Problem
2.2 Markov Properties
2.3 The Bayesian Decision Theory
2.3.1 Descriptive and Generative Models
2.3.2 Statistical-Structural Pattern Recognition
2.4 Summary
References
3 Type-2 Fuzzy Sets for Pattern Recognition
3.1 Type-2 Fuzzy Sets
3.2 Operations on Type-2 Fuzzy Sets
3.3 Type-2 Fuzzy Logic Systems
3.3.1 Fuzzifier
3.3.2 Rule Base and Inference
3.3.3 Type Reducer and Defuzzifier
3.4 Pattern Recognition Using Type-2 Fuzzy Sets
3.5 The Type-2 Fuzzy Bayesian Decision Theory
3.6 Summary
References
4 Type-2 Fuzzy Gaussian Mixture Models
4.1 Gaussian Mixture Models
4.2 Type-2 Fuzzy Gaussian Mixture Models
4.3 Multi-category Pattern Classification
References
5 Type-2 Fuzzy Hidden Moarkov Models
5.1 Hidden Markov Models
5.1.1 The Forward-Backward Algorithm
5.1.2 The Viterbi Algorithm
5.1.3 The Baum-Welch Algorithm
5.2 Type-2 Fuzzy Hidden Markov Models
5.2.1 Elements of a Type-2 FHMM
5.2.2 The Type-2 Fuzzy Forward-Backward Algorithm
5.2.3 The Type-2 Fuzzy Viterbi Algorithm
5.2.4 The Learning Algorithm
5.2.5 Type-Reduction and Defuzzification
5.2.6 Computational Complexity
5.3 Speech Recognition
5.3.1 Automatic Speech Recognition System
5.3.2 Phoneme Classification
5.3.3 Phoneme Recognition
5.4 Summary
References
6 Type-2 Fuzzy Markov Random Fields
6.1 Markov Random Fields
6.1.1 The Neighborhood System
6.1.2 Clique Potentials
6.1.3 Relaxation Labeling
6.2 Type-2 Fuzzy Markov Random Fields
6.2.1 The Type-2 Fuzzy Relaxation Labeling
6.2.2 Computational Complexity
6.3 Stroke Segmentation of Chinese Character
6.3.1 Gabor Filters-Based Cyclic Observations
6.3.2 Stroke Segmentation Using MRFs
6.3.3 Stroke Extraction of Handprinted Chinese Characters.
6.3.4 Stroke Extraction of Cursive Chinese Characters
6.4 Handwritten Chinese Character Recognition
6.4.1 MRFs for Character Structure Modeling
6.4.2 Handwritten Chinese Character Recognition (HCCR).
6.4.3 Experimental Results
6.5 Summary
References
7 Type-2 Fuzzy Topic Models
7.1 Latent Dirichlet Allocation
7.1.1 Factor Graph for the Collapsed LDA
7.1.2 Loopy Belief Propagation (BP)
7.1.3 An Alternative View of BP
7.1.4 Simplified BP (siBP)
7.1.5 Relationship to Previous Algorithms
7.1.6 Belief Propagation for ATM
7.1.7 Belief Propagation for RTM
7.2 Speedup Topic Modeling
7.2.1 Fast Topic Modeling Techniques
7.2.2 Residual Belief Propagation
7.2.3 Active Belief Propagation
7.3 Type-2 Fuzzy Latent Dirichlet Allocation
7.3.1 Topic Models
7.3.2 Type-2 Fuzzy Topic Models (T2 FTMs)
7.4 Topic Modeling Performance
7.4.1 Belief Propagation
7.4.2 Residual Belief Propagation
7.4.3 Active Belief Propagation
7.5 Human Action Recognition
7.5.1 Feature Extraction and Vocabulary Formation
7.5.2 Results on KTH Data Set
References
8 Conclusions and Future Work
8.1 Conclusions
8.2 Future Works
Errata to: Type-2 Fuzzy Graphical Models for Pattern Recognition
猜您喜欢