书籍详情
动力系统Maple应用(第2版)
作者:[英] Stephen Lynch(S.林奇) 著
出版社:世界图书出版公司
出版时间:2015-11-01
ISBN:9787510095542
定价:¥80.00
购买这本书可以去
内容简介
藉助Maple代数操作软件包,该书介绍了动力系统的研究原理。作者强调了信息覆盖面的广度而不是细节,而且定理的证明也很少。书中的一些知识点在别的书中几乎看不到。常见的定理,如分叉、双稳定性、混沌、不稳定性、多稳定性和周期性定理,贯穿于各章节中。将Maple作为贯穿始终的教学工具,该书成了数学中的“动手做”教材。读者对象:应用数学领域、自然科学和工程类专业的高年级本科生、研究生和科研工作者。
作者简介
Stephen Lynch(S.林奇),是国际知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
目录
Preface
0 A Tutorial Introduction to Maple
0.1 A Quick Tour of Maple
0.2 Tutorial One: The Basics (One Hour)
0.3 Tutorial Two: Plots and Differential Equations (One Hour)
0.4 Simple Maple Programs
0.5 Hints for Programming
0.6 Maple Exercises
1 Differential Equations
1.1 Simple Differential Equations and Applications
1.2 Applications to Chemical Kinetics
1.3 Applications to Electric Circuits
1.4 Existence and Uniqueness Theorem
1.5 Maple Commands
1.6 Exercises
2 Planar Systems
2.1 Canonical Forms
2.2 Eigenvectors Defining Stable and Unstable Manifolds
2.3 Phase Portraits of Linear Systems in the Plane
2.4 Linearization and Hartman's Theorem
2.5 Constructing Phase Plane Diagrams
2.6 Maple Commands
2.7 Exercises
3 Interacting Species
3.1 Competing Species
3.2 Predator—Prey Models
3.3 Other Characteristics Affecting Interacting Species
3.4 Maple Commands
3.5 Exercises
4 Limit Cycles
4.1 Historical Background
4.2 Existence and Uniqueness of Limit Cycles in the Plane
4.3 Nonexistence of Limit Cycles in the Plane
4.4 Perturbation Methods
4.5 Maple Commands
4.6 Exercises
5 Hamiltonian Systems, Lyapunov Functions, and Stability
5.1 Hamiltonian Systemsin the Plane
5.2 Lyapunov Functions and Stability
5.3 Maple Commands
5.4 Exercises
6 Bifurcation Theory
6.1 Bifurcations of Nonlinear Systems in the Plane
6.2 Normal Forms
6.3 Multistability and Bistability
6.4 Maple Commands
6.5 Exercises
7 Three—Dimensional Autonomous Systems and Chaos
7.1 Linear Systems and Canonical Forms
7.2 Nonlinear Systems and Stability
7.3 The Rossler System and Chaos
7.4 The Lorenz Equations, Chua's Circuit, and the Belousov— Zhabotinski Reaction
7.5 Maple Commands
7.6 Exercises
8 Poincare Maps and Nonautonomous Systemsin the Plane
8.1 Poincare Maps
8.2 Hamiltonian Systems with Two Degrees of Freedom
8.3 Nonautonomous Systemsin the Plane
8.4 Maple Commands
8.5 Exercises
9 Local and Global Bifurcations
9.1 Small—Amplitude Limit Cycle Bifurcations
9.2 Grobner Bases
9.3 Melnikov Integrals and Bifurcating Limit Cycles from a Center
9.4 Bifurcations Involving Homoclinic Loops
9.5 Maple Commands
9.6 Exercises
10 The Second Part of Hilbert's Sixteenth Problem
10.1 Statement of Problem and Main Results
10.2 Poincare Compactification
10.3 Global Results for Lienard Systems
10.4 Local Results for Lienard Systems
10.5 Exercises
11 Linear Discrete Dynanucal Systems
11.1 Recurrence Relations
11.2 The Leslie Model
11.3 Harvesting and Culling Policies
11.4 Maple Commands
11.5 Exercises
12 Nonlinear Discrete Dynamical Systems
12.1 The Tent Map and Graphical Iterations
12.2 Fixed Points and Periodic Orbits
12.3 The Logistic Map, Bifurcation Diagram, and Feigenbaum Number
12.4 Gaussian and Henon Maps
12.5 Applications
12.6 Maple Commands
12.7 Exercises
13 Complex Iterative Maps
13.1 Julia Sets and the Mandelbrot Set
13.2 Boundaries of Periodic Orbits
13.3 Maple Commands
13.4 Exercises
14 Electromagnetic Waves and Optical Resonators
14.1 Maxwell's Equations and Electromagnetic Waves
14.2 Historical Background
14.3 The Nonlinear SFR Resonator
14.4 Chaotic Attractors and Bistability
14.5 Linear Stability Analysis
14.6 Instabilities and Bistability
14.7 Maple Commands
14.8 Exercises
15 Fractals and Multifractals
15.1 ConstrucLion of Simple Examples
15.2 Calculating Fractal Dimensions
15.3 A Multifractal Formalism
15.4 Multifractals in the Real World and Some Simple Examples
15.5 Maple Commands
15.6 Exercises
16 Chaos Control and Synchronization
16.1 Historical Background
16.2 Controlling Chaos in the Logistic Map
16.3 Controlling Chaos in the Henon Map
16.4 Chaos Synchronization
16.5 Maple Commands
16.6 Exercises
17 Neural Networks
17.1 Introduction
17.2 The Delta Learning Rule and Backpropagation
17.3 The Hopfield Network and Lyapunov Stability
17.4 Neurodynamics
17.5 Maple Commands
17.6 Exercises
18 Simulation
18.1 Simulink
18.2 The MapleSim Connectivity Toolbox
18.3 MapleSim
18.4 Exercises
19 Examination—Type Questions
19.1 Dynamical Systems with Applications
19.2 Dynamical Systems with Maple
……
20 Solutions to Exercises
References
Maple Program Index
Index
猜您喜欢