书籍详情

应用回归及分类:基于R

应用回归及分类:基于R

作者:吴喜之 著

出版社:中国人民大学出版社

出版时间:2016-01-01

ISBN:9787300222875

定价:¥32.00

购买这本书可以去
内容简介
  本书包括的内容有: 经典线性回归、广义线性模型、纵向数据(分层模型), 机器学习回归方法(决策树、bagging、随机森林、mboost、人工神经网络、支持向量机、k最近邻方法)、生存分析及Cox模型、经典判别分析与logistic回归分类、机器学习分类方法(决策树、bagging、随机森林、adaboost、人工神经网络、支持向量机、k最近邻方法). 其中, 纵向数据(分层模型)及生存分析及Cox模型的内容可根据需要选用, 所有其他的内容都应该在教学中涉及, 可以简化甚至忽略的内容为一些数学推导和某些不那么优秀的模型, 不可以忽略的是各种方法的直观意义及理念.
作者简介
  吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。
目录
第一章 引言
第二章 经典线性回归
第三章 广义线性模型
第四章 纵向数据及分层模型
第五章 机器学习回归方法
第六章 生存分析及Cox模型
第七章 经典分类:判别分析
第八章 机器学习分类方法
附录 练习:熟练使用R软件
参考文献
猜您喜欢

读书导航