书籍详情
信息融合估计理论及其应用
作者:邓自立 著
出版社:科学出版社
出版时间:2012-06-01
ISBN:9787030349408
定价:¥80.00
购买这本书可以去
内容简介
《信息融合估计理论及其应用》用作者(邓自立)独创的现代时间序列分析方法和经典Kalman滤波方法系统地提出了最优融合估计、自校正融合估计和鲁棒融合估计的新理论、新方法和新算法,其中包括最优和自校正融合、集中式和分布式融合、状态融合和观测融合Kalman滤波和Wiener滤波理论,及协方差交叉融合鲁棒Kal—man滤波理论,并给出了在目标跟踪系统中的仿真应用。《信息融合估计理论及其应用》内容新颖,理论严谨,理论体系完整,并含有大量仿真例子,可作为高等学校控制科学与技术、电子科学与技术、通信与信息技术、计算机应用技术等有关专业研究生和高年级本科生的教材,且对信号处理、控制、通信、航天、导航、制导、目标跟踪、卫星测控、GPs定位、检测与估计、故障诊断、机器人、遥感、图像处理、多传感器信息融合等领域的研究人员和工程技术人员也有重要参考价值。
作者简介
暂缺《信息融合估计理论及其应用》作者简介
目录
前言
第1章 绪论
1.1 多传感器信息融合产生的背景
1.2 信息融合概念和定义
1.3 估计理论的方法论
1.3.1 Kalman滤波方法
1.3.2 现代时间序列分析方法
1.3.3 时域Wiener滤波方法
1.3.4 系统辨识方法
1.4 信息融合估计理论的分支和进展
1.4.1 最优信息融合滤波理论
1.4.2 信息融合系统辨识
1.4.3 自校正信息融合滤波理论
1.4.4 CI融合鲁棒信息融合滤波理论
1.5 信息融合滤波的基本方法
1.5.1 集中式融合与分布式融合方法
1.5.2 状态融合与观测融合方法
1.5.3 最优加权融合估计方法
1.5.4 CI融合估计方法
1.5.5 信息融合辨识方法
1.5.6 自校正融合方法
1.5.7 自校正融合滤波器的收敛性分析方法
1.5.8 批处理、序贯处理和并行处理CI融合方法
1.6 小结
参考文献
第2章 信息融合估计的基本方法
2.1 最小二乘估计
2.1.1 最小二乘估计原理
2.1.2 一般最小二乘法估计公式推导及性质
2.1.3 RLS估计
2.2 WLS估计
2.2.1 WLS估计原理
2.2.2 一般WLS估计公式推导及性质
2.3 LUMV估计
2.3.1 LUMV估计原理
2.3.2 LUMV估计及性质
2.3.3 一般线性最小方差估计及性质
2.4 三种加权最优融合估计
2.4.1 按矩阵加权线性最小方差最优融合估计准则
2.4.2 按标量加权线性最小方差最优融合估计准则
2.4.3 按对角阵加权线性最小方差最优融合估计准则
2.5 CI融合估计
2.5.1 协方差椭圆及其性质
2.5.2 CI融合估计的几何原理
2.5.3 CI融合估值的一致性
2.5.4 最优参数~的选择
2.5.5 CI融合估值的鲁棒性
2.5.6 CI融合估值的精度分析
2.5.7 Cl融合估值与局部和三种加权融合估值的精度比较
2.6 小结
参考文献
第3章 Kalman滤波
3.1 引言
3.2 状态空间模型与ARMA模型
3.2.1 状态空间模型
3.2.2 ARMA模型
3.2.3 状态空间模型与ARMA模型的关系
3.3 正交投影与新息序列
3.4 Kalman滤波器、预报器和平滑嚣
3.4.1 Kalman滤波器和预报器
3.4.2 Kalman平滑器
3.5 信息滤波器
3.6 Kalman滤波的稳定性
3.7 稳态Kalman滤波及其收敛性
3.7.1 稳态Kalman滤波
……
第4章 现代时间序列分析方法
第5章 基于Kalman滤波方法的最优信息融合滤波理论
第6章 基于现代时间序列分析方法的最优信息融合滤波理论
第7章 自校正信息融合滤波理论
第8章 CI融合鲁棒Kalman滤波理论
第1章 绪论
1.1 多传感器信息融合产生的背景
1.2 信息融合概念和定义
1.3 估计理论的方法论
1.3.1 Kalman滤波方法
1.3.2 现代时间序列分析方法
1.3.3 时域Wiener滤波方法
1.3.4 系统辨识方法
1.4 信息融合估计理论的分支和进展
1.4.1 最优信息融合滤波理论
1.4.2 信息融合系统辨识
1.4.3 自校正信息融合滤波理论
1.4.4 CI融合鲁棒信息融合滤波理论
1.5 信息融合滤波的基本方法
1.5.1 集中式融合与分布式融合方法
1.5.2 状态融合与观测融合方法
1.5.3 最优加权融合估计方法
1.5.4 CI融合估计方法
1.5.5 信息融合辨识方法
1.5.6 自校正融合方法
1.5.7 自校正融合滤波器的收敛性分析方法
1.5.8 批处理、序贯处理和并行处理CI融合方法
1.6 小结
参考文献
第2章 信息融合估计的基本方法
2.1 最小二乘估计
2.1.1 最小二乘估计原理
2.1.2 一般最小二乘法估计公式推导及性质
2.1.3 RLS估计
2.2 WLS估计
2.2.1 WLS估计原理
2.2.2 一般WLS估计公式推导及性质
2.3 LUMV估计
2.3.1 LUMV估计原理
2.3.2 LUMV估计及性质
2.3.3 一般线性最小方差估计及性质
2.4 三种加权最优融合估计
2.4.1 按矩阵加权线性最小方差最优融合估计准则
2.4.2 按标量加权线性最小方差最优融合估计准则
2.4.3 按对角阵加权线性最小方差最优融合估计准则
2.5 CI融合估计
2.5.1 协方差椭圆及其性质
2.5.2 CI融合估计的几何原理
2.5.3 CI融合估值的一致性
2.5.4 最优参数~的选择
2.5.5 CI融合估值的鲁棒性
2.5.6 CI融合估值的精度分析
2.5.7 Cl融合估值与局部和三种加权融合估值的精度比较
2.6 小结
参考文献
第3章 Kalman滤波
3.1 引言
3.2 状态空间模型与ARMA模型
3.2.1 状态空间模型
3.2.2 ARMA模型
3.2.3 状态空间模型与ARMA模型的关系
3.3 正交投影与新息序列
3.4 Kalman滤波器、预报器和平滑嚣
3.4.1 Kalman滤波器和预报器
3.4.2 Kalman平滑器
3.5 信息滤波器
3.6 Kalman滤波的稳定性
3.7 稳态Kalman滤波及其收敛性
3.7.1 稳态Kalman滤波
……
第4章 现代时间序列分析方法
第5章 基于Kalman滤波方法的最优信息融合滤波理论
第6章 基于现代时间序列分析方法的最优信息融合滤波理论
第7章 自校正信息融合滤波理论
第8章 CI融合鲁棒Kalman滤波理论
猜您喜欢