书籍详情
数据挖掘导论(完整版)
作者:(美)陈封能,(美)斯坦巴赫,(美)库玛尔 著,范明 等译
出版社:人民邮电出版社
出版时间:2011-01-01
ISBN:9787115241009
定价:¥69.00
购买这本书可以去
内容简介
《数据挖掘导论(完整版)》全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。《数据挖掘导论(完整版)》适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。
作者简介
陈封能(Pang-Ning Tan)现为密歇根州立大学计算机与工程系助理教授,主要教授数据挖掘、数据库系统等课程。此前,他曾是明尼苏达大学美国陆军高性能计算研究中心副研究员(2002-2003)。斯坦巴赫(Michael Steinbach)明尼苏达大学计算机与工程系研究员,在读博士。库玛尔(Vipin Kumar)明尼苏达大学计算机科学与工程系主任,曾任美国陆军高性能计算研究中心主任。他拥有马里兰大学博士学位,是数据挖掘和高性能计算方面的国际权威,IEEE会士。范明,郑州大学信息工程学院教授,中国计算机学会数据库专业委员会委员、人工智能与模式识别专业委员会委员,长期从事计算机软件与理论教学和研究。先后发表论史40余篇。范宏建 澳大利亚墨尔本大学计算机科学博士。先后在WWW、PAKDD、RSFDGrC、IEEE GrC和Australian AI等国际学术会议和IEEE Transactions on Knowledge and Data Engineering发表论文10余篇。目前是澳大利亚AUSTRAC的高级分析师。
目录
第1章 绪论
1.1 什么是数据挖掘
1.2 数据挖掘要解决的问题
1.3 数据挖掘的起源
1.4 数据挖掘任务
1.5 本书的内容与组织
文献注释
参考文献
习题
第2章 数据
2.1 数据类型
2.1.1 属性与度量
2.1.2 数据集的类型
2.2 数据质量
2.2.1 测量和数据收集问题
2.2.2 关于应用的问题
2.3 数据预处理
2.3.1 聚集
2.3.2 抽样
2.3.3 维归约
2.3.4 特征子集选择
2.3.5 特征创建
2.3.6 离散化和二元化
2.3.7 变量变换
2.4 相似性和相异性的度量
2.4.1 基础
2.4.2 简单属性之间的相似度和相异度
2.4.3 数据对象之间的相异度
2.4.4 数据对象之间的相似度
2.4.5 邻近性度量的例子
2.4.6 邻近度计算问题
2.4.7 选取正确的邻近性度量
文献注释
参考文献
习题
第3章 探索数据
第4章 分类:基本概念、决策树与模型评估
第5章 分类:其他技术
第6章 关联分析:基本概念和算法
第7章 关联分析:高级概念
第8章 聚类分析:基本概念和算法
第9章 聚类分析:其他问题与算法
第10章 异常检测
文献注释
参考文献
习题
附录a 线性代数
附录b 维归约
附录c 概率统计
附录d 回归
附录e 优化
1.1 什么是数据挖掘
1.2 数据挖掘要解决的问题
1.3 数据挖掘的起源
1.4 数据挖掘任务
1.5 本书的内容与组织
文献注释
参考文献
习题
第2章 数据
2.1 数据类型
2.1.1 属性与度量
2.1.2 数据集的类型
2.2 数据质量
2.2.1 测量和数据收集问题
2.2.2 关于应用的问题
2.3 数据预处理
2.3.1 聚集
2.3.2 抽样
2.3.3 维归约
2.3.4 特征子集选择
2.3.5 特征创建
2.3.6 离散化和二元化
2.3.7 变量变换
2.4 相似性和相异性的度量
2.4.1 基础
2.4.2 简单属性之间的相似度和相异度
2.4.3 数据对象之间的相异度
2.4.4 数据对象之间的相似度
2.4.5 邻近性度量的例子
2.4.6 邻近度计算问题
2.4.7 选取正确的邻近性度量
文献注释
参考文献
习题
第3章 探索数据
第4章 分类:基本概念、决策树与模型评估
第5章 分类:其他技术
第6章 关联分析:基本概念和算法
第7章 关联分析:高级概念
第8章 聚类分析:基本概念和算法
第9章 聚类分析:其他问题与算法
第10章 异常检测
文献注释
参考文献
习题
附录a 线性代数
附录b 维归约
附录c 概率统计
附录d 回归
附录e 优化
猜您喜欢