书籍详情

协同演化算法及其在数据挖掘中的应用

协同演化算法及其在数据挖掘中的应用

作者:董红斌,贺志 著

出版社:水利水电出版社

出版时间:2008-07-01

ISBN:9787508456881

定价:¥26.00

购买这本书可以去
内容简介
  演化算法是一种模拟生物演化过程与机制求解优化问题及搜索问题的一类自组织、自适应人工智能技术。协同演化算法是针对传统演化算法的不足而兴起的,通过构造两个或多个种群,建立它们之间的竞争或合作关系,多个种群相互作用来提高各自性能,适应复杂系统的动态演化环境,以达到种群优化的目标。协同演化算法是近年来已成为计算机智能研究的一个热点,已广泛应用于电子工程、模式识别、交通运输规划、经济管理和工程设计优化等领域。本书从协同演化理论和演化算法相结合的角度出发,着重介绍了协同演化算法及其在数据挖掘的应用方面的研究工作。全书共分为10章,内容包括绪论、函数优化、约束优化、多目标优化、兴趣度量优化、数据集的优化和规则形式的简化及演化聚类算法等。本书可作为计算机科学、信息科学、人工智能自动化技术及数据挖掘等相关专业的研究生、教师和科技工作者的参考书。
作者简介
暂缺《协同演化算法及其在数据挖掘中的应用》作者简介
目录
第1章 绪论
1.1 演化算法概述
1.1.1 演化算法的起源
1.1.2 演化算法的应用领域
1.1.3 演化算法的发展趋势
1.2 演化算法的基本原理
1.2.1 生物学基础
1.2.2 演化算法与最优化
1.2.3 演化算法的一般框架
1.2.4 没有免费午餐定理
1.3 协同演化算法研究现状
1.3.1 协同进化论
1.3.2 演化博弈论
1.3.3 协同演化算法设计
1.3.4 协同演化算法的应用
第2章 数据挖掘和关联规则
2.1 数据挖掘
2.1.1 数据挖掘的定义和过程
2.1.2 挖掘的数据形式
2.1.3 数据挖掘的功能
2.2 关联分析
2.2.1 关联规则的定义
2.2.2 关联规则挖掘的问题
2.3 聚类分析
2.3.1 聚类分析的意义
2.3.2 聚类分析的概念
2.3.3 聚类分析的算法
2.4 遗传算法在规则发现中的应用
2.4.1 个体表示
2.4.2 算子
2.4.3 种群初始化
2.4.4 适应度
2.4.5 分类规则发现和关联规则发现的不同
第3章 基于混合策略的协同演化算法
3.1 引言
3.2 混合策略协同演化规划的基本思想
3.2.1 概率分布函数的性能
3.2.2 混合策略协同演化规划框架
3.3 求解函数优化问题的MSCEP算法
3.4 实验结果和分析
3.4.1 实验结果
3.4.2 实验分析
3.5 小结
第4章 求解约束优化问题的混合策略演化算法
4.1 引言
4.2 求解约束优化问题的基本思想
4.2.1 约束优化问题
4.2.2 约束比较规则
4.3 求解约束优化问题的CMSEP算法
4.4 实验结果和分析
4.4.1 实验结果
4.4.2 结果分析
4.5 小结
第5章 求解多目标优化问题的混合策略演化算法
5.1 引言
5.2 相关工作
5.2.1 关键技术
5.2.2 研究现状
5.3 求解多目标优化问题的基本思想
5.3.1 多目标优化问题
5.3.2 强度Pareto优化的基本思想
5.4 混合策略的Pareto演化规划
5.5 实验结果和分析
5.5.1 测试函数
5.5.2 占果分析
5.6 小结
第6章 兴趣度量的优化
6.1 关联规则的兴趣度量
6.1.1 兴趣度量的目的
6.1.2 兴趣度量的分类
6.2 发现度量约束下的规则
6.3 发现基于残差的最优相关规则
6.3.1 残差分析
6.3.2 互信息量
6.3.3 用遗传算法发现优化相关规则GADCR
6.4 实验
6.4.1 人工数据集上的实验结果
6.4.2 真实数据集上的实验结果
6.5 小结
第7章 数据集的优化
7.1 离散化简介
7.1.1 有监督和无监督离散化
7.1.2 一元与多元离散化
7.1.3 MVD
7.2 一种基于聚类的无监督多元离散化方法EMVD—BDC
7.2.1 动机
7.2.2 EMVD-BDC
7.3 MVD的一种优化算法OMVD
7.3.1 最大支持度差异(MSD)
7.3.2 用遗传算法优化MSD列表
7.4 实验
7.4.1 人工数据集上的实验
7.4.2 真实数据集上的实验
7.5 小结
第8章 规则形式的简化
8.1 最优关联规则的简介
8.1.1 问题的提出和定义
8.1.2 发现最优置信度规则的经典算法:FOCR
8.1.3 其他算法
8.2 发现最优interest规则
8.2.1 问题的定义
8.2.2 发现最优interest规则的算法FOCR
8.3 发现最优相对密度规则
8.3.1 密度度量
8.3.2 相对密度度量
8.3.3 最优相对密度规则的发现算法FORDAR
8.4 实验
8.4.1 人工数据集上的实验
8.4.2 真实数据集上的实验
8.5 小结
第9章 基于混合策略的演化聚类算法
9.1 引言
9.2 模糊C均值聚类
9.2.1 模糊C均值聚类算法
9.2.2 模糊权和有效性函数
9.3 混合策略演化聚类算法
9.4 实验结果和分析
9.4.1 人工数据集和真实数据集
9.4.2 有效性指标实验分析
9.4.3 算法性能分析
9.4.4 参数选择
9.5 小结
第10章 总结
参考文献
猜您喜欢

读书导航