书籍详情

偏微分方程

偏微分方程

作者:陈祖墀

出版社:高等教育出版社

出版时间:2003-05-01

ISBN:9787040235876

定价:¥24.40

购买这本书可以去
内容简介
  《偏微分方程(第3版普通高等教育十一五国家级规划教材)》作者陈祖墀)对偏微分方程的古典理论作了严谨的介绍和论证,在内容、概念与方法等方面注重与现代偏微分方程知识之间的内在联系,对现代偏微分方程知识作了基本的阐述,注意各个数学分支知识在偏微分方程中的应用。本书内容丰富,方法多样,技巧性强,并配有大量的例题和习题,难易兼顾,层次分明。《偏微分方程(第3版普通高等教育十一五国家级规划教材)》可作为综合性大学和高等师范院校数学类专业教材和教学参考书,还可作为一般数学工作者、物理工作者和工程技术人员的参考书。
作者简介
  陈祖墀,男,1965年山东大学毕业后分配到中国科学技术大学由华罗庚教授正在创建的统筹方法研究室,师从华罗庚教授学习并研究应用数学。1973-1974受学校指派曾参与华北油田的勘测和开发,与北京大学数学系一起从事建立地层模型和数值模拟的研究工作。该工作结束后被授予国家科技进步集体一等奖。1980年开始专门从事偏微分方程的研究工作。1983年至1985年由美国加州大学柏克利(University of California at Berkeley)分校数学系的陈省身教授(Professor S.S.Chern)推荐到该校数学系,作为访问学者从事非线性偏微分方程的进修与研究工作。1987年起至今被美国数学会聘为“美国数学评论”评论员并吸收为美国数学会会员,数次被美国和英国教育科研信息机构编入“世界人名录”和“剑桥人名录”。1985年底回国,1986年晋升为副教授,1992年提升为教授,同年享受由国务院颁发的专家特殊政府津贴待遇。1995年遴选为博士生导师。作为访问学者,于1995年9月至1996年1月应邀访问美国加州大学伯克利(Berkeley)分校数学系和普度(Purdue)大学数学系,从事非线性方程的研究工作。从大学毕业至今,一直在中国科大数学系从事教学、科研和培养研究生的工作。承担国家自然科学基金项目和中国科学院科研项目及教育部博士点基金项目至今,培养数学研究生20余名。曾获“中国科学院研究生优秀导师奖”,“安徽省优秀教师奖”等多项奖励。
目录
第1章 绪论
1.1 基本概念
1.1.1 定义与例子
1.1.2 叠加原理

1.2 定解问题
1.2.1 定解条件与定解问题
1.2.2 定解问题的适定性

1.3 二阶半线性方程的分类与标准型
1.3.1 多个自变量的方程
1.3.2 个自变量的方程
1.3.3 方程化为标准型
习题1

第2章 一阶拟线性方程
2.1 一般理论
2.1.1 特征曲线与积分曲面
2.1.2 初值问题
2.1.3 例题

2.2 传输方程
2.2.1 齐次方程的初值问题行波解
2.2.2 非齐次传输方程
习题2

第3章 波动方程
3.1 一维波动方程的初值问题
3.1.1 dAlembert公式反射法
3.1.2 依赖区域决定区域影响区域
3.1.3 初值问题的弱解

3.2 一维波动方程的初边值问题
3.2.1 齐次方程特征线法
3.2.2 齐次方程分离变量法
3.2.3 非齐次方程特征函数展开法

3.3 StarmLiOUVille特征值问题
3.3.1 特征函数的性质
3.3.2 特征值与特征函数的存在性
3.3.3 特征函数系的完备性

3.4 高维波动方程的初值问题
3.4.1 球面平均法Kirchhoff公式
3.4.2 降维法:Poisson公式
3.4.3 非方程Duhamel原理
3.4.4 Huygens原理波的弥散

3.5 能量法解的唯一性与稳定性
3.5.1 能量等式初边值问题解的唯_性
3.5.2 能量不等式初边值问题解的稳定性
3.5.3 初值问题解的唯一性
习题3

第4章 热传导方程
4.1 初值问题
4.1.1Fourier变换及其性质
4.1.2 解初值问题
4.1.3 解的存在性

4.2 最大值原理及其应用
4.2.1 最大值原理
4.2.2 初边值问题解的唯一性与稳定性
4.2.3 初值问题解的唯一性与稳定性
4.2.4 例题
4.3 强最大值原理
习题4

第5章 位势方程
5.1 基本解
5.1.1 基本解Green公式
5.1.2 平均值等式
5.1.3 最大最小值原理及其应用

5.2 Green函数
5.2.1Green函数的导出及其性质
5.2.2 球上的Green函数Poisson积分公式.
5.2.3 上半空间上的Green函数
5.2.4 球上Dirichlet问题解的存在性
5.2.5 能量法

5.3 调和函数的基本性质
5.3.1 逆平均值性质
5.3.2 Harnack不等式
5.3.3 Liouville定理
5.3.4 奇点可去性定理
5.3.5 正则性
5.3.6 微商的局部估计
5.3.7 解析性
5.3.8 例题

5.4 Hopf最大值原理及其应用
5.4.1Hopf最大值原理
5.4.2 应用

5.5 位势方程的弱解
5.5.1 伴随微分算子与伴随边值问题
5.5.2 弱微商及其简单性质
5.5.3Sobolev空间H1(Ω)与H(Ω)
5.5.4 弱解的存在唯一性
习题5

第6章 变分法与边值问题
6.1 边值问题与算子方程
6.1.1 薄膜的横振动与最小位能原理
6.1.2 正算子与算子方程
6.1.3 正定算子弱解存在性

6.2 Laplace算子的特征值问题
6.2.1 特征值与特征函数的存在性
6.2.2 特征值与特征函数的性质
习题6

第7章 特征理论偏微分方程组
7.1 方程的特征理论’
7.1.1 弱间断解与弱间断面
7.1.2 特征方程与特征曲面

7.2 方程组的特征理论
7.2.1 弱间断解与特征线
7.2.2 狭义双曲型方程组的标准型

7.3 双曲型方程组的Cauchy问题
7.3.1 解的存在性与唯一性
7.3.2 解的稳定性

7.4 Cauchy-Kovalevskaja定理
7.4.1 Cauchy—Kovalevskaja型方程组
7.4.2 Cauchy问题的化简
7.4.3 强函数
7.4.4 Cauchy-Kovalevskaja定理的证明
习题7

第8章 广义函数与基本解
8.1 基本空间
8.1.1 引言
8.1.2 基本空间D(RN)和E(RN)
8.1.3 基本空间I(RN)及其上的Fourier变换

8.2 广义函数空间
8.2.1 概念与例子
8.2.2 广义函数的收敛性
8.2.3 自变量的交换
8.2.4 广义函数的微商与乘子
8.2.5 广义函数的支集
8.2.6 广义函数的卷积
8.2.7 空间上的Fourier变换

8.3 基本解
8.3.1 基本解的概念
8.3.2 热传导方程及其Cauchy问题的基本解
8.3.3 波动方程Cauchy问题的基本解.
8.3.4 调和、重调和及多调和算子的基本解.
习题8
索引
猜您喜欢

读书导航