书籍详情
集体智慧编程(影印版)
作者:(美国)(Segaran、T)西格兰
出版社:东南大学出版社
出版时间:2008-03-01
ISBN:9787564111397
定价:¥58.00
购买这本书可以去
内容简介
《集体智慧编程(影印版)》想要探寻搜索排名、产品推荐、社会化书签和在线匹配背后的力量吗?这本颇具魅力的书籍向你展现如何创建Web2.0应用程序,从参与性?Internet应用程序产生的大量数据中挖掘金矿。运用《集体智慧编程(影印版)》中介绍的先进算法,你可以编写聪明的程序,以访问其他网站那些有趣的数据集,从自有应用程序的用户中收集数据,或者分析和理解你所发现的数据。《集体智慧编程》将你带入机器学习和统计的世界,并且阐释了如何从你和他人每天收集的信息中获得关于用户体验、市场营销、个性品味及人类行为的结论。每个算法的描述都十分简明清晰,相关代码均可以立即用于你的网站、博客、Wiki或特定应用程序。《集体智慧编程(影印版)》讲解了下列主题:可以让在线零售商推荐产品或媒体的协作过滤技术用于在大数据集中发现同类项组的聚类方法从数以百万计可能方案中选择问题最佳解决方案的最优化算法。贝叶斯过滤,用在基于单词类型和其他特征的垃圾信息过滤中支持向量(support-vector)机器,用于在线交友网站中的速配用于问题解决的演化智能——计算机如何通过多次玩同样的游戏,改进自身代码并获得技能提升每一章都包含了相关练习,可通过扩展使算法变得更强大。超越简单的数据库支持应用程序模式,让Internet数据财富为你所用。
作者简介
暂缺《集体智慧编程(影印版)》作者简介
目录
Foreword
Preface
1.Introduction to Collective Intelligence
What Is Collective Intelligence?
What Is Machine Learning?
Limits of Machine Learning
Real-Life Examples
Other Uses for Learning Algorithms
2.Making Recommendations
Collaborative Filtering
Collecting Preferences
Finding Similar Users
Recommending Items
Matching Products
Building a del.icio.us Link Recommender
Item-Based Filtering
Using the MovieLens Dataset
User-Based or Item-Based Filtering?
Exercises
3.Discovering Groups
4.Searching and Ranking
5.Optimization
6.Document Filtering
7.Modeling with Decision Trees
8.Building Price Models
9.Advanced Classification: Kernel Methods and SVMs
10.Finding Independent Features
11.Evolving Intelligence
12.Algorithm Summary
Preface
1.Introduction to Collective Intelligence
What Is Collective Intelligence?
What Is Machine Learning?
Limits of Machine Learning
Real-Life Examples
Other Uses for Learning Algorithms
2.Making Recommendations
Collaborative Filtering
Collecting Preferences
Finding Similar Users
Recommending Items
Matching Products
Building a del.icio.us Link Recommender
Item-Based Filtering
Using the MovieLens Dataset
User-Based or Item-Based Filtering?
Exercises
3.Discovering Groups
4.Searching and Ranking
5.Optimization
6.Document Filtering
7.Modeling with Decision Trees
8.Building Price Models
9.Advanced Classification: Kernel Methods and SVMs
10.Finding Independent Features
11.Evolving Intelligence
12.Algorithm Summary
猜您喜欢