书籍详情
代数数论(影印版)
作者:(德)诺伊基希
出版社:科学出版社
出版时间:2007-01-01
ISBN:9787030182890
定价:¥88.00
购买这本书可以去
内容简介
从出版方面来讲,除了较好较快地出版我们自己的成果外,引进国外的先进出版物无疑也是十分重要与必不可少的。从数学来说,施普林格(Springer)出版社至今仍然是世界上最具权威的出版社。科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这28本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。
作者简介
暂缺《代数数论(影印版)》作者简介
目录
Chapter Ⅰ:Algebraic Integers
1. The Gaussian Integers
2. Integrality
3. Ideals
4. Lattices
5. Minkowski Theory
6. The Class Number
7. Dirichlet's Unit Theorem
8. Extensions of Dedekind Domains
9. Hilbert's Ramification Theory
10. Cyclotomic Fields
11. Localization
12. Orders
13. One-dimensional Schemes
14. Function Fields
Chapter Ⅱ:The Theory of Valuations
1. The p-adic Numbers
2. The p-adic Absolute Value
3. Valuations
4. Completions
5. Local Fields
6. Henselian Fields
7. Unramified and Tamely Ramified Extensions
8. Extensions of Valuations
9. Galois Theory of Valuations
10. Higher Ramification Groups
Chapter Ⅲ:Riemann-Roeh Theory
1. Primes
2. Different and Discriminant
3. Riemann-Roch
4. Metrized o-Modules
5. Grothendieck Groups
6. The Chern Character
7. Grothendieck-Riemann-Roch
8. The Euler-Minkow.ski Characteristic
Chapter Ⅳ:Abstract Class Field Theory
1. Infinite Galois Theory
2. Projective and Inductive Limits
3. Abstract Galois Theory
4. Abstract Valuation Theory
5. The Reciprocity Map
6. The General Reciprocity Law
7. The Herbrand Quotient
Chapter Ⅴ:Local Class Field Theory
1. The Local Reciprocity Law
2. The Norm Residue Symbol over Q(p)
3. The Hilbert Symbol
4. Formal Groups
5. Generalized Cyclotomic Theory
6. Higher Ramification Groups
Chapter Ⅵ:Global Class Field Theory
1. Idèles and Idèle Classes
2. Idèles in Field Extensions
3. The Herbrand Quotient of the Idèle Class Group
4. The Class Field Axiom
5. The Global Reciprocity Law
6. Global Class Fields
7. The Ideal-Theoretic Version of Class Field Theory
8. The Reciprocity Law of the Power Residues
Chapter Ⅶ:Zeta Functions and L-series
1. The Riemann Zeta Function
2. Dirichlet L-series
3. Theta Series
4. The Higher-dimensional Gamma Function
5. The Dedekind Zeta Function
6. Hecke Characters
7. Theta Series of Algebraic Number Fields
8. Hecke L-series
9. Values of Dirichlet L-series at Integer Points
10. Artin L-series
11. The Artin Conductor
12. The Functional Equation of Artin L-series
13. Density Theorems
Bibliography
Index
1. The Gaussian Integers
2. Integrality
3. Ideals
4. Lattices
5. Minkowski Theory
6. The Class Number
7. Dirichlet's Unit Theorem
8. Extensions of Dedekind Domains
9. Hilbert's Ramification Theory
10. Cyclotomic Fields
11. Localization
12. Orders
13. One-dimensional Schemes
14. Function Fields
Chapter Ⅱ:The Theory of Valuations
1. The p-adic Numbers
2. The p-adic Absolute Value
3. Valuations
4. Completions
5. Local Fields
6. Henselian Fields
7. Unramified and Tamely Ramified Extensions
8. Extensions of Valuations
9. Galois Theory of Valuations
10. Higher Ramification Groups
Chapter Ⅲ:Riemann-Roeh Theory
1. Primes
2. Different and Discriminant
3. Riemann-Roch
4. Metrized o-Modules
5. Grothendieck Groups
6. The Chern Character
7. Grothendieck-Riemann-Roch
8. The Euler-Minkow.ski Characteristic
Chapter Ⅳ:Abstract Class Field Theory
1. Infinite Galois Theory
2. Projective and Inductive Limits
3. Abstract Galois Theory
4. Abstract Valuation Theory
5. The Reciprocity Map
6. The General Reciprocity Law
7. The Herbrand Quotient
Chapter Ⅴ:Local Class Field Theory
1. The Local Reciprocity Law
2. The Norm Residue Symbol over Q(p)
3. The Hilbert Symbol
4. Formal Groups
5. Generalized Cyclotomic Theory
6. Higher Ramification Groups
Chapter Ⅵ:Global Class Field Theory
1. Idèles and Idèle Classes
2. Idèles in Field Extensions
3. The Herbrand Quotient of the Idèle Class Group
4. The Class Field Axiom
5. The Global Reciprocity Law
6. Global Class Fields
7. The Ideal-Theoretic Version of Class Field Theory
8. The Reciprocity Law of the Power Residues
Chapter Ⅶ:Zeta Functions and L-series
1. The Riemann Zeta Function
2. Dirichlet L-series
3. Theta Series
4. The Higher-dimensional Gamma Function
5. The Dedekind Zeta Function
6. Hecke Characters
7. Theta Series of Algebraic Number Fields
8. Hecke L-series
9. Values of Dirichlet L-series at Integer Points
10. Artin L-series
11. The Artin Conductor
12. The Functional Equation of Artin L-series
13. Density Theorems
Bibliography
Index
猜您喜欢