书籍详情
凝聚态物理专题
作者:叶令
出版社:复旦大学出版社
出版时间:2003-07-01
ISBN:9787309036404
定价:¥23.00
购买这本书可以去
内容简介
20世纪末的二三十年中,凝聚态物理领域里取得了若干重大的、激动人心的发现和进展。这不仅使人们对凝聚态物质的物理有了更加深入的认识和理解,也对新的理论方法和新技术的发展有显著的影响,从而也促进了新实验方法和某些工业生产的发展。我们设立这门课程主要是想介绍这方面的物理内容,课程的大部分选题尚未在我们的大学生课程中列入。王迅教授想把这些令人兴奋的凝聚态物理内容作为一门研究生的课程开设出来。我们选择了一部分内容,其中不少是获得诺贝尔奖的课题。我们感到这些物理内容十分精彩,也希望同学们会享受这些凝聚态物理中的闪光点。在选材方面,我们尽量避免大量的数学,主要着重于讲述这些现象的物理内涵,希望对上个世纪末凝聚态物理学中的一些闻名于世的现象在物理上有所理解。由于我们的知识和水平有限,有些相当重要的内容并未收入。在编写过程中,有些材料取自原始的科学论文或综述文章,也有些源自万维网(WWW)上查得的内容和图片。我们十分感谢那些作者让我们选用他们已发表的内容。本书中难免会有错误和缺点,希望读者能给于批评和指正。本书第一章和第四章由彭向阳编写,第二章和第三章由叶令编写,第五章由叶令和胡艳芳编写。王迅教授仔细通读了全文,并作了大量的修改和补充。我们还要感谢JeffWebb博士通阅了本书,在外语方面作了有益的修改。我们希望能将此书献给母校――复旦大学的一百周年校庆。
作者简介
叶令,1938年7月出生于上海。1962年毕业于复旦大学物理系,1965年在复旦大学物理系理论物理专业研究生毕业。1968-1978年在上海无线电十七厂工作,任技术员、工程师,1978年调入复旦大学物理系任教至今。现主要从事固体物理等基础课程的教学工作,以及凝聚态物理固体电子态方面的理论研究工作。现为教授、博士生导师。彭向阳,1968年12月生于湖南。1991年毕业于国防科技大学应用物理系,获学士学位。1994年在国防科技大学应用物理系获得硕士学位。1994-2000年曾在国防科技大学应用物理系从事科研和教学工作。2001年至今,于复旦大学物理系攻读博士学位。
目录
CONTENTS
PREFACE
Chapter 1 High Tc Superconductivity
1.1 INTRODUCTION
1.1.1 Historical Retrospect
1.1.2 Discovery of CuprateSuperconductors
1.2 CONVENTIONAL SUPERCONDUCTORS
1.2.1 Phenomenological Theories of Superconductivity
1.2.2 BCS Theory
1.2.3 Josephson Effect
1.3 BASIC PROPERTIES OF CUPRATE SUPERCONDUCTORS
1.3.1 Crystal Structures
1.3.2 Phase Diagram
1.3.3 d-Wave Symmetry
1.3.4 Energy Gap
1.3.5 Anomalies of Cuprate Superconductors
1.4 MECHANISMS AND THEORIES OF HIGH Tc SUPERCONDUCTIVITY
1.4.1 Strong Correlation in Cuprate Superconductors
1.4.2 Resonating Valence Bond Theory
1.4.3 Theory Based on the Stripe Phases
Chapter 2 Quantum Hall Effect
2.1 THE HALL EFFECT
2.2 INTEGER QUANTUM HALL EFFECT
2.2.1 Two-dimensional Electron Gas
2.2.2 Quantum Hall Effect
2.2.3 Filling of Landau Levels
2.2.4 Localized States and Extended States
2.3 FRACTIONAL QUANTUM HALL EFFECT
2.3.1 Experimental Observations
2.3.2 Laughlin Wave Function and Flux Quanta
2.3.3 Composite Particles
2.3.4 State with ν=1/2 and Composite Fermion Theory
2.3.5 State with Filling Factor of 5/2
Chapter 3 Glant and Colossal Magnetoresistance
3.1 INTRODUCTION
3.2 GIANT MAGNETORESISTANCE
3.2.1 GMR Structures and Phenomena
3.2.2 Main Mechanism for GMR
3.2.3 Preliminary Theories for GMR
3.3 COLOSSAL MAGNETORESISTANCE
3.3.1 Experimental CMR and Manganites
3.3.2 Double Exchange Model for CMR
3.3.3 Other Mechanisms Beyond Double Exchange Model
Chapter 4 Fullerenes and Carbon Nanotubes
4.1 INTRODUCTION
4.2 FULLERENES
4.2.1 History
4.2.2 Structure of C60 and the Bond Formation
4.2.3 Family of Hollow Spherical All Carbon Molecules
4.2.4 Chemical Modification
4.2.5 Doped Crystals of C60 and Their Superconductivity
4.2.6 Electronic States
4.3 CARBON NANOTUBES
4.3.1 History
4.3.2 Structures
4.3.3 Electronic States
4.3.4 Superconductivity of Carbon Nanotubes
4.3.5 Electron Transport
4.3.6 Carbon nanotubebased electronics
Chapter 5Laser Cooling and BoseEinstein Condensation
5.1 LASER COOLING AND TRAPPING OF ATOMS
5.1. 1Deceleration of Atoms by Laser Beam
5.1.2 Doppler Cooling and Optical Molasses
5.1.3 Sisyphus Cooling and Subrecoil Cooling
5.1.4 Trapping of Atoms
5.2 BOSEEINSTEIN CONDENSATION
5.2.1 Concept of BoseEinstein Condensation
5.2.2 Physical Conditions for Achieving BoseEinstein Condensation
5.2.3 Experimental Demonstration of BoseEinsteinCondensation
5.3 ATOM LASER
5.3.1 What is Atom Laser
5.3.2 Experimental Methods
5.3.3 Continuousbeam Atom Laser
References
Index
PREFACE
Chapter 1 High Tc Superconductivity
1.1 INTRODUCTION
1.1.1 Historical Retrospect
1.1.2 Discovery of CuprateSuperconductors
1.2 CONVENTIONAL SUPERCONDUCTORS
1.2.1 Phenomenological Theories of Superconductivity
1.2.2 BCS Theory
1.2.3 Josephson Effect
1.3 BASIC PROPERTIES OF CUPRATE SUPERCONDUCTORS
1.3.1 Crystal Structures
1.3.2 Phase Diagram
1.3.3 d-Wave Symmetry
1.3.4 Energy Gap
1.3.5 Anomalies of Cuprate Superconductors
1.4 MECHANISMS AND THEORIES OF HIGH Tc SUPERCONDUCTIVITY
1.4.1 Strong Correlation in Cuprate Superconductors
1.4.2 Resonating Valence Bond Theory
1.4.3 Theory Based on the Stripe Phases
Chapter 2 Quantum Hall Effect
2.1 THE HALL EFFECT
2.2 INTEGER QUANTUM HALL EFFECT
2.2.1 Two-dimensional Electron Gas
2.2.2 Quantum Hall Effect
2.2.3 Filling of Landau Levels
2.2.4 Localized States and Extended States
2.3 FRACTIONAL QUANTUM HALL EFFECT
2.3.1 Experimental Observations
2.3.2 Laughlin Wave Function and Flux Quanta
2.3.3 Composite Particles
2.3.4 State with ν=1/2 and Composite Fermion Theory
2.3.5 State with Filling Factor of 5/2
Chapter 3 Glant and Colossal Magnetoresistance
3.1 INTRODUCTION
3.2 GIANT MAGNETORESISTANCE
3.2.1 GMR Structures and Phenomena
3.2.2 Main Mechanism for GMR
3.2.3 Preliminary Theories for GMR
3.3 COLOSSAL MAGNETORESISTANCE
3.3.1 Experimental CMR and Manganites
3.3.2 Double Exchange Model for CMR
3.3.3 Other Mechanisms Beyond Double Exchange Model
Chapter 4 Fullerenes and Carbon Nanotubes
4.1 INTRODUCTION
4.2 FULLERENES
4.2.1 History
4.2.2 Structure of C60 and the Bond Formation
4.2.3 Family of Hollow Spherical All Carbon Molecules
4.2.4 Chemical Modification
4.2.5 Doped Crystals of C60 and Their Superconductivity
4.2.6 Electronic States
4.3 CARBON NANOTUBES
4.3.1 History
4.3.2 Structures
4.3.3 Electronic States
4.3.4 Superconductivity of Carbon Nanotubes
4.3.5 Electron Transport
4.3.6 Carbon nanotubebased electronics
Chapter 5Laser Cooling and BoseEinstein Condensation
5.1 LASER COOLING AND TRAPPING OF ATOMS
5.1. 1Deceleration of Atoms by Laser Beam
5.1.2 Doppler Cooling and Optical Molasses
5.1.3 Sisyphus Cooling and Subrecoil Cooling
5.1.4 Trapping of Atoms
5.2 BOSEEINSTEIN CONDENSATION
5.2.1 Concept of BoseEinstein Condensation
5.2.2 Physical Conditions for Achieving BoseEinstein Condensation
5.2.3 Experimental Demonstration of BoseEinsteinCondensation
5.3 ATOM LASER
5.3.1 What is Atom Laser
5.3.2 Experimental Methods
5.3.3 Continuousbeam Atom Laser
References
Index
猜您喜欢