书籍详情
人工智能原理与方法(王永庆)
作者:王永庆著
出版社:西安交通大学出版社
出版时间:2001-10-01
ISBN:9787560509341
定价:¥32.00
购买这本书可以去
内容简介
内容简介本书较全面地介绍了人工智能的基本理论、方法及其应用技术。全书共12章,可分为三大部分:第一部分包括第1章至第6章,论述了人工智能的三大技术,即知识表示、推理及搜索,重点讨论了不确定性的表示及处理技术;第二部分包括第7章至第10章,着重讨论了专家系统、机器学习、模式识别及智能决策支持系统等研究领域的有关概念及系统构成技术;第三部分包括第11章和第12章,分别讨论了神经网络和智能计算机的概念、模型、研究现状及展望等。该书取材新颖,具有系统性、新颖性、实用性及可读性等特点,便于教学和自学,适于作为计算机学科本科生及研究生的教科书,亦可供有关科技人员参考。
作者简介
暂缺《人工智能原理与方法(王永庆)》作者简介
目录
第1章 绪论
1. 1 什么是人工智能
1. 1. 1 智能
1. 1. 2 人工智能
1. 1. 3 人工智能的发展简史
1. 2 人工智能的研究目标及基本内容
1. 2. 1 人工智能的研究目标
1. 2. 2 人工智能研究的基本内容
1. 3 人工智能的研究途径
1. 3. 1 以符号处理为核心的方法
1. 3. 2 以网络连接为主的连接机制方法
1. 3. 3 系统集成
1. 4 人工智能的研究领域
1. 4. 1 专家系统
1. 4. 2 机器学习
1. 4. 3 模式识别
1. 4. 4 自然语言理解
1. 4. 5 自动定理证明
1. 4. 6 自动程序设计
1. 4. 7 机器人学
1. 4. 8 博弈
1. 4. 9 智能决策支持系统
1. 4. 10 人工神经网络
本章小结
习 题
第2章 人工智能的数学基础
2. 1 命题逻辑与谓词逻辑
2. 1. 1 命题
2. 1. 2 谓词
2. 1. 3 谓词公式
2. 1. 4 谓词公式的解释
2. 1. 5 谓词公式的永真性. 可满足性. 不可满足性
2. 1. 6 谓词公式的等价性与永真蕴含
2. 2 多值逻辑
2. 3 概率论
2. 3. 1 随机现象
2. 3. 2 样本空间与随机事件
2. 3. 3 事件的概率
2. 3. 4 条件概率
2. 3. 5 全概率公式与Bayes公式
2. 4 模糊理论
2. 4. 1 模糊性
2. 4. 2 集合与特征函数
2. 4. 3 模糊集与隶属函数
2. 4. 4 模糊集的表示方法
2. 4. 5 模糊集的运算
2. 4. 6 模糊集的λ水平截集
2. 4. 7 模糊度
2. 4. 8 模糊数
2. 4. 9 模糊关系及其合成
2. 4. 10 模糊变换
2. 4. 11 实数域上几种常用的隶属函数
2. 4. 12 建立隶属函数的方法
本章小结
习 题
第3章 知识与知识表示
3. 1 基本概念
3. 1. 1 什么是知识
3. 1. 2 知识的特性
3. 1. 3 知识的分类
3. 1. 4 知识的表示
3. 2 一阶谓词逻辑表示法
3. 2. 1 表示知识方法
3. 2. 2 一阶谓词逻辑表示法的特点
3. 3 产生式表示法
3. 3. 1 产生式的基本形式
3. 3. 2 产生式系统
3. 3. 3 产生式系统的分类
3. 3. 4 产生式表示法的特点
3. 4 框架表示法
3. 4. 1 框架理论
3. 4. 2 框架
3. 4. 3 框架网络
3. 4. 4 框架中槽的设置与组织
3. 4. 5 框架系统中求解问题的基本过程
3. 4. 6 框架表示法的特点
3. 5 语义网络表示法
3. 5. 1 语义网络的概念
3. 5. 2 知识的语义网络表示
3. 5. 3 常用的语义联系
3. 5. 4 语义网络系统中求解问题的基本过程
3. 5. 5 语义网络表示法的特点
3. 6 脚本表示法
3. 6. 1 概念依赖理论
3. 6. 2 脚本
3. 7 过程表示法
3. 7. 1 表示知识方法
3. 7. 2 过程表示法的特点
3. 8 Petri网表示法
3. 8. 1 表示知识方法
3. 8. 2 Petri网表示法的特点
3. 9 面向对象表示法
3. 9. 1 面向对象的基本概念
3. 9. 2 表示知识方法
本章小结
习 题
第4章 经典逻辑推理
4. 1 基本概念
4. 1. 1 什么是推理
4. 1. 2 推理方式及其分类
4. 1. 3 推理的控制策略
4. 1. 4 模式匹配
4. 1. 5 冲突消解策略
4. 2 自然演绎推理
4. 3 归结演绎推理
4. 3. 1 子句
4. 3. 2 海伯伦理论
4. 3. 3 鲁宾逊归结原理
4. 3. 4 归结反演
4. 3. 5 应用归结原理求取问题的答案
4. 3. 6 归结策略
4. 4 与/或形演绎推理
4. 4. 1 与/或形正向演绎推理
4. 4. 2 与域形逆向演绎推理
4. 4. 3 与域形双向演绎推理
4. 4. 4 代换的一致性及剪枝策略
本章小结
习 题
第5章 不确定与非单调推理
5. 1 基本概念
5. 1. 1 什么是不确定性推理
5. 1. 2 不确定性推理中的基本问题
5. 1. 3 不确定性推理方法的分类
5. 2 概率方法
5. 2. 1 经典概率方法
5. 2. 2 逆概率方法
5. 3 主观Bayes方法
5. 3. 1 知识不确定性的表示
5. 3. 2 证据不确定性的表示
5. 3. 3 组合证据不确定性的算法
5. 3. 4 不确定性的传递算法
5. 3. 5 结论不确定性的合成算法
5. 4 可信度方法
5. 4. 1 可信度的概念
5. 4. 2 C-F模型
5. 4. 3 带有阈值限度的不确定性推理
5. 4. 4 加权的不确定性推理
5. 4. 5 前提条件中带有可信度因子的不确定性推理
5. 5 证据理论
5. 5. 1 D-S理论
5. 5. 2 一个具体的不确定性推理模型
5. 6 模糊推理
5. 6. 1 模糊命题
5. 6. 2 模糊知识的表示
5. 6. 3 模糊匹配与冲突消解
5. 6. 4 模糊推理的基本模式
5. 6. 5 简单模糊推理
5. 6. 6 模糊三段论推理
5. 6. 7 多维模糊推理
5. 6. 8 多重模糊推理
5. 6. 9 带有可信度因子的模糊推理
5. 7 基于框架表示的不确定性推理
5. 7. 1 不确定性知识的框架表示
5. 7. 2 框架的不确定性匹配
5. 7. 3 框架推理
5. 8 基于语义网络表示的不确定性推理
5. 8. 1 不确定性知识的语义网络表示
5. 8. 2 语义网络推理
5. 9 非单调推理
5. 9. 1 非单调推理的概念
5. 9. 2 缺省理论
5. 9. 3 界限理论
5. 9. 4 正确性维持系统TMS
本章小结
习 题
第6章 搜索策暗
6. 1 基本概念
6. 1. 1 什么是搜索
6. 1. 2 状态空间表示法
6. 1. 3 与域树表示法
6. 2 状态空间的搜索策略
6. 2. 1 状态空间的一般搜索过程
6. 2. 2 广度优先搜索
6. 2. 3 深度优先搜索
6. 2. 4 有界深度优先搜索
6. 2. 5 代价树的广度优先搜索
6. 2. 6 代价树的深度优先搜索
6. 2. 7 启发式搜索
6. 2. 8 A*算法
6. 3 与域树的搜索策略
6. 3. 1 与域树的一般搜索过程
6. 3. 2 与域树的广度优先搜索
6. 3. 3 与域树的深度优先搜索
6. 3. 4 与域树的有序搜索
6. 3. 5 博弈树的启发式搜索
6. 3. 6 α-β剪枝技术
6. 4 搜索的完备性与效率
6. 4. 1 完备性
6. 4. 2 搜索效率
本章小结
习 题
第7章 专家系统
7. 1 基本概念
7. 1. 1 什么是专家系统
7. 1. 2 专家系统的产生与发展
7. 1. 3 专家系统的分类
7. 2 专家系统的一般结构
7. 2. 1 人机接口
7. 2. 2 知识获取机构
7. 2. 3 知识库及其管理系统
7. 2. 4 推理机
7. 2. 5 数据库及其管理系统
7. 2. 6 解释机构
7. 3 知识获取
7. 3. 1 知识获取的任务
7. 3. 2 知识获取方式
7. 4 知识的检测与求精
7. 4. 1 知识的一致性与完整性
7. 4. 2 基于经典逻辑的检测方法
7. 4. 3 基于Petri网的检测方法
7. 4. 4 知识求精
7. 5 知识的组织与管理
7. 5. 1 知识的组织
7. 5. 2 知识的管理
7. 6 专家系统的建造与评价
7. 6. 1 专家系统的建造原则
7. 6. 2 专家系统的开发过程
7. 6. 3 专家系统的评价
7. 7 专家系统的开发工具
7. 7. 1 人工智能语言
7. 7. 2 专家系统外壳
7. 7. 3 通用型专家系统工具
7. 7. 4 专家系统开发环境
7. 8 新一代专家系统的研究
7. 9 专家系统举例
7. 9. 1 动物识别系统
7. 9. 2 专家系统MYCIN
本章小结
习 题
第8章 机器学习
8. 1 基本概念
8. 1. 1 什么是机器学习
8. 1. 2 学习系统
8. 1. 3 机器学习的发展
8. 1. 4 机器学习的分类
8. 2 机械式学习
8. 3 指导式学习
8. 4 归纳学习
8. 4. 1 归纳推理
8. 4. 2 示例学习
8. 4. 3 观察与发现学习
8. 5 类比学习
8. 5. 1 类比推理
8. 5. 2 属性类比学习
8. 5. 3 转换类比学习
8. 6 基于解释的学习
8. 6. 1 基于解释学习的概念
8. 6. 2 基于解释学习的学习过程
8. 6. 3 领域知识的完善性
8. 7 学习方法的比较与展望
8. 7. 1 各种学习方法的比较
8. 7. 2 机器学习的展望
本章小结
习 题
第9章 模式识别
9. 1 基本概念
9. 1. 1 什么是模式识别
9. 1. 2 模式识别的一般过程
9. 2 统计模式识别
9. 2. 1 模板匹配分类法
9. 2. 2 最小距离分类法
9. 2. 3 相似系数分类法
9. 2. 4 几何分类法
9. 2. 5 Bayes分类法
9. 2. 6 聚类分析法
9. 3 结构模式识别
9. 3. 1 结构模式识别的基本过程
9. 3. 2 基元抽取与模式文法
9. 3. 3 模式的识别与分析
9. 4 模糊模式识别
9. 4. 1 基于最大隶属原则的模式分类
9. 4. 2 基于择近原则的模式分类
9. 4. 3 基于模糊等价关系的模式分类
9. 4. 4 基于模糊相似关系的模式分类
本章小结
习 题
第10章 智能决策支持系统
10. 1 基本概念
10. 1. 1 决策与决策过程
10. 1. 2 决策支持系统
10. 1. 3 智能决策支持系统
10. 2 智能决策支持系统的基本构件
10. 2. 1 数据库系统
10. 2. 2 模型库系统
10. 2. 3 方法库系统
10. 2. 4 知识库系统
10. 2. 5 人机接口系统
10. 3 智能决策支持系统的系统结构
10. 3. 1 四库结构
10. 3. 2 融合结构
10. 4 多媒体人机智能接口
10. 4. 1 多媒体技术
10. 4. 2 多媒体技术在智能决策支持系统中的应用
10. 4. 3 多媒体人机智能接口的设计与实现
本章小结
习 题
第11章 神经网络
11. 1 基本概念
11. 1. 1 脑神经系统与生物神经元
11. 1. 2 人工神经元及其互连结构
11. 1. 3 人工神经网络的特征及分类
11. 1. 4 神经网络研究的发展简史
11. 2 神经网络模型
11. 2. 1 感知器
ll. 2. 2 B-P模型
11. 2. 3 Hopfield模型
11. 2. 4 自适应共振理论
11. 3 神经网络在专家系统中的应用
11. 3. 1 神经网络与专家系统的互补性
11. 3. 2 基于神经网络的知识表示
11. 3. 3 基于神经网络的推理
11. 4 神经网络在模式识别中的应用
本章小结
习 题
第12章 智能计算机
12. 1 什么是智能计算机
12. 2 知识信息处理系统
12. 3 人工神经网络计算机
12. 3. 1 数字集成电路形式
12. 3. 2 模拟集成电路形式
12. 4 光计算机
12. 4. 1 空间光调制器
12. 4. 2 光互连
12. 4. 3 光全息存储与光计算机的研制
12. 5 生物计算机
本章小结
习 题
附录
参考文献
1. 1 什么是人工智能
1. 1. 1 智能
1. 1. 2 人工智能
1. 1. 3 人工智能的发展简史
1. 2 人工智能的研究目标及基本内容
1. 2. 1 人工智能的研究目标
1. 2. 2 人工智能研究的基本内容
1. 3 人工智能的研究途径
1. 3. 1 以符号处理为核心的方法
1. 3. 2 以网络连接为主的连接机制方法
1. 3. 3 系统集成
1. 4 人工智能的研究领域
1. 4. 1 专家系统
1. 4. 2 机器学习
1. 4. 3 模式识别
1. 4. 4 自然语言理解
1. 4. 5 自动定理证明
1. 4. 6 自动程序设计
1. 4. 7 机器人学
1. 4. 8 博弈
1. 4. 9 智能决策支持系统
1. 4. 10 人工神经网络
本章小结
习 题
第2章 人工智能的数学基础
2. 1 命题逻辑与谓词逻辑
2. 1. 1 命题
2. 1. 2 谓词
2. 1. 3 谓词公式
2. 1. 4 谓词公式的解释
2. 1. 5 谓词公式的永真性. 可满足性. 不可满足性
2. 1. 6 谓词公式的等价性与永真蕴含
2. 2 多值逻辑
2. 3 概率论
2. 3. 1 随机现象
2. 3. 2 样本空间与随机事件
2. 3. 3 事件的概率
2. 3. 4 条件概率
2. 3. 5 全概率公式与Bayes公式
2. 4 模糊理论
2. 4. 1 模糊性
2. 4. 2 集合与特征函数
2. 4. 3 模糊集与隶属函数
2. 4. 4 模糊集的表示方法
2. 4. 5 模糊集的运算
2. 4. 6 模糊集的λ水平截集
2. 4. 7 模糊度
2. 4. 8 模糊数
2. 4. 9 模糊关系及其合成
2. 4. 10 模糊变换
2. 4. 11 实数域上几种常用的隶属函数
2. 4. 12 建立隶属函数的方法
本章小结
习 题
第3章 知识与知识表示
3. 1 基本概念
3. 1. 1 什么是知识
3. 1. 2 知识的特性
3. 1. 3 知识的分类
3. 1. 4 知识的表示
3. 2 一阶谓词逻辑表示法
3. 2. 1 表示知识方法
3. 2. 2 一阶谓词逻辑表示法的特点
3. 3 产生式表示法
3. 3. 1 产生式的基本形式
3. 3. 2 产生式系统
3. 3. 3 产生式系统的分类
3. 3. 4 产生式表示法的特点
3. 4 框架表示法
3. 4. 1 框架理论
3. 4. 2 框架
3. 4. 3 框架网络
3. 4. 4 框架中槽的设置与组织
3. 4. 5 框架系统中求解问题的基本过程
3. 4. 6 框架表示法的特点
3. 5 语义网络表示法
3. 5. 1 语义网络的概念
3. 5. 2 知识的语义网络表示
3. 5. 3 常用的语义联系
3. 5. 4 语义网络系统中求解问题的基本过程
3. 5. 5 语义网络表示法的特点
3. 6 脚本表示法
3. 6. 1 概念依赖理论
3. 6. 2 脚本
3. 7 过程表示法
3. 7. 1 表示知识方法
3. 7. 2 过程表示法的特点
3. 8 Petri网表示法
3. 8. 1 表示知识方法
3. 8. 2 Petri网表示法的特点
3. 9 面向对象表示法
3. 9. 1 面向对象的基本概念
3. 9. 2 表示知识方法
本章小结
习 题
第4章 经典逻辑推理
4. 1 基本概念
4. 1. 1 什么是推理
4. 1. 2 推理方式及其分类
4. 1. 3 推理的控制策略
4. 1. 4 模式匹配
4. 1. 5 冲突消解策略
4. 2 自然演绎推理
4. 3 归结演绎推理
4. 3. 1 子句
4. 3. 2 海伯伦理论
4. 3. 3 鲁宾逊归结原理
4. 3. 4 归结反演
4. 3. 5 应用归结原理求取问题的答案
4. 3. 6 归结策略
4. 4 与/或形演绎推理
4. 4. 1 与/或形正向演绎推理
4. 4. 2 与域形逆向演绎推理
4. 4. 3 与域形双向演绎推理
4. 4. 4 代换的一致性及剪枝策略
本章小结
习 题
第5章 不确定与非单调推理
5. 1 基本概念
5. 1. 1 什么是不确定性推理
5. 1. 2 不确定性推理中的基本问题
5. 1. 3 不确定性推理方法的分类
5. 2 概率方法
5. 2. 1 经典概率方法
5. 2. 2 逆概率方法
5. 3 主观Bayes方法
5. 3. 1 知识不确定性的表示
5. 3. 2 证据不确定性的表示
5. 3. 3 组合证据不确定性的算法
5. 3. 4 不确定性的传递算法
5. 3. 5 结论不确定性的合成算法
5. 4 可信度方法
5. 4. 1 可信度的概念
5. 4. 2 C-F模型
5. 4. 3 带有阈值限度的不确定性推理
5. 4. 4 加权的不确定性推理
5. 4. 5 前提条件中带有可信度因子的不确定性推理
5. 5 证据理论
5. 5. 1 D-S理论
5. 5. 2 一个具体的不确定性推理模型
5. 6 模糊推理
5. 6. 1 模糊命题
5. 6. 2 模糊知识的表示
5. 6. 3 模糊匹配与冲突消解
5. 6. 4 模糊推理的基本模式
5. 6. 5 简单模糊推理
5. 6. 6 模糊三段论推理
5. 6. 7 多维模糊推理
5. 6. 8 多重模糊推理
5. 6. 9 带有可信度因子的模糊推理
5. 7 基于框架表示的不确定性推理
5. 7. 1 不确定性知识的框架表示
5. 7. 2 框架的不确定性匹配
5. 7. 3 框架推理
5. 8 基于语义网络表示的不确定性推理
5. 8. 1 不确定性知识的语义网络表示
5. 8. 2 语义网络推理
5. 9 非单调推理
5. 9. 1 非单调推理的概念
5. 9. 2 缺省理论
5. 9. 3 界限理论
5. 9. 4 正确性维持系统TMS
本章小结
习 题
第6章 搜索策暗
6. 1 基本概念
6. 1. 1 什么是搜索
6. 1. 2 状态空间表示法
6. 1. 3 与域树表示法
6. 2 状态空间的搜索策略
6. 2. 1 状态空间的一般搜索过程
6. 2. 2 广度优先搜索
6. 2. 3 深度优先搜索
6. 2. 4 有界深度优先搜索
6. 2. 5 代价树的广度优先搜索
6. 2. 6 代价树的深度优先搜索
6. 2. 7 启发式搜索
6. 2. 8 A*算法
6. 3 与域树的搜索策略
6. 3. 1 与域树的一般搜索过程
6. 3. 2 与域树的广度优先搜索
6. 3. 3 与域树的深度优先搜索
6. 3. 4 与域树的有序搜索
6. 3. 5 博弈树的启发式搜索
6. 3. 6 α-β剪枝技术
6. 4 搜索的完备性与效率
6. 4. 1 完备性
6. 4. 2 搜索效率
本章小结
习 题
第7章 专家系统
7. 1 基本概念
7. 1. 1 什么是专家系统
7. 1. 2 专家系统的产生与发展
7. 1. 3 专家系统的分类
7. 2 专家系统的一般结构
7. 2. 1 人机接口
7. 2. 2 知识获取机构
7. 2. 3 知识库及其管理系统
7. 2. 4 推理机
7. 2. 5 数据库及其管理系统
7. 2. 6 解释机构
7. 3 知识获取
7. 3. 1 知识获取的任务
7. 3. 2 知识获取方式
7. 4 知识的检测与求精
7. 4. 1 知识的一致性与完整性
7. 4. 2 基于经典逻辑的检测方法
7. 4. 3 基于Petri网的检测方法
7. 4. 4 知识求精
7. 5 知识的组织与管理
7. 5. 1 知识的组织
7. 5. 2 知识的管理
7. 6 专家系统的建造与评价
7. 6. 1 专家系统的建造原则
7. 6. 2 专家系统的开发过程
7. 6. 3 专家系统的评价
7. 7 专家系统的开发工具
7. 7. 1 人工智能语言
7. 7. 2 专家系统外壳
7. 7. 3 通用型专家系统工具
7. 7. 4 专家系统开发环境
7. 8 新一代专家系统的研究
7. 9 专家系统举例
7. 9. 1 动物识别系统
7. 9. 2 专家系统MYCIN
本章小结
习 题
第8章 机器学习
8. 1 基本概念
8. 1. 1 什么是机器学习
8. 1. 2 学习系统
8. 1. 3 机器学习的发展
8. 1. 4 机器学习的分类
8. 2 机械式学习
8. 3 指导式学习
8. 4 归纳学习
8. 4. 1 归纳推理
8. 4. 2 示例学习
8. 4. 3 观察与发现学习
8. 5 类比学习
8. 5. 1 类比推理
8. 5. 2 属性类比学习
8. 5. 3 转换类比学习
8. 6 基于解释的学习
8. 6. 1 基于解释学习的概念
8. 6. 2 基于解释学习的学习过程
8. 6. 3 领域知识的完善性
8. 7 学习方法的比较与展望
8. 7. 1 各种学习方法的比较
8. 7. 2 机器学习的展望
本章小结
习 题
第9章 模式识别
9. 1 基本概念
9. 1. 1 什么是模式识别
9. 1. 2 模式识别的一般过程
9. 2 统计模式识别
9. 2. 1 模板匹配分类法
9. 2. 2 最小距离分类法
9. 2. 3 相似系数分类法
9. 2. 4 几何分类法
9. 2. 5 Bayes分类法
9. 2. 6 聚类分析法
9. 3 结构模式识别
9. 3. 1 结构模式识别的基本过程
9. 3. 2 基元抽取与模式文法
9. 3. 3 模式的识别与分析
9. 4 模糊模式识别
9. 4. 1 基于最大隶属原则的模式分类
9. 4. 2 基于择近原则的模式分类
9. 4. 3 基于模糊等价关系的模式分类
9. 4. 4 基于模糊相似关系的模式分类
本章小结
习 题
第10章 智能决策支持系统
10. 1 基本概念
10. 1. 1 决策与决策过程
10. 1. 2 决策支持系统
10. 1. 3 智能决策支持系统
10. 2 智能决策支持系统的基本构件
10. 2. 1 数据库系统
10. 2. 2 模型库系统
10. 2. 3 方法库系统
10. 2. 4 知识库系统
10. 2. 5 人机接口系统
10. 3 智能决策支持系统的系统结构
10. 3. 1 四库结构
10. 3. 2 融合结构
10. 4 多媒体人机智能接口
10. 4. 1 多媒体技术
10. 4. 2 多媒体技术在智能决策支持系统中的应用
10. 4. 3 多媒体人机智能接口的设计与实现
本章小结
习 题
第11章 神经网络
11. 1 基本概念
11. 1. 1 脑神经系统与生物神经元
11. 1. 2 人工神经元及其互连结构
11. 1. 3 人工神经网络的特征及分类
11. 1. 4 神经网络研究的发展简史
11. 2 神经网络模型
11. 2. 1 感知器
ll. 2. 2 B-P模型
11. 2. 3 Hopfield模型
11. 2. 4 自适应共振理论
11. 3 神经网络在专家系统中的应用
11. 3. 1 神经网络与专家系统的互补性
11. 3. 2 基于神经网络的知识表示
11. 3. 3 基于神经网络的推理
11. 4 神经网络在模式识别中的应用
本章小结
习 题
第12章 智能计算机
12. 1 什么是智能计算机
12. 2 知识信息处理系统
12. 3 人工神经网络计算机
12. 3. 1 数字集成电路形式
12. 3. 2 模拟集成电路形式
12. 4 光计算机
12. 4. 1 空间光调制器
12. 4. 2 光互连
12. 4. 3 光全息存储与光计算机的研制
12. 5 生物计算机
本章小结
习 题
附录
参考文献
猜您喜欢