书籍详情
纳米技术中的显微学手册(第2卷 电子显微学 英文版)
作者:姚楠,王中林主编
出版社:清华大学出版社
出版时间:2005-01-01
ISBN:9787302097587
定价:¥80.00
购买这本书可以去
内容简介
现代显微学在纳米技术领域的研究和发展中起到“眼睛”和“手”的功能。迄今,人们仍在孜孜不倦地寻找纳米尺度上的“火眼金睛”。本手册的目的在于提供关于各种显微学的原理及其在该迅猛发展的领域内应用的综述参考书。本手册共有22个专题,每一专题都由不同研究领域的、处于世界前沿的科学家撰写。本书是第2卷,叙述的是电子显微学的内容,共有12个专题。本书力图使读者对所叙述的方法有一个概念上的理解,而不是只停留在对理论的堆砌上。在每一个专题里,都会叙述相关的实例及其应用并加以讨论,使读者对电子显微技术能明了和理解;还会进一步展示各章之间的内在联系,表明每一种技术如何在综合性的、复杂的测试中各自扮演独特的角色,解决具体的问题。
作者简介
暂缺《纳米技术中的显微学手册(第2卷 电子显微学 英文版)》作者简介
目录
1High\|Resolution Scanning Electron Microscopy1
1.1Introduction: Scanning Electron Microscopy
and Nanotechnology1
1.2Electron\|Specimen Interactions5
1.2.1Electron\|Specimen Interactions in
Homogeneous Materials6
1.2.2Electron\|Speciment Interactions in
Composite Samples8
1.3Instrumentation of/the Scanning Electron Microscope10
1.3.1General Description10
1.3.2Performance of a Scanning Electron Microscope13
1.4The Resolution of Secondary
and Backscattered Electron Images18
1.5Contrast Mechanisms of SE and BE Images of Nanoparticles
and Other Systems21
1.5.1Small Particle Contrast in High\|Resolution
BE Images22
1.5.2Small Particle Contrast in High\|Resolution
SE Images25
1.5.3Other Contrast Mechanisms28
1.6Applications to Characterizing Nanophase Materials29
1.7Summary and Perspectives32
References352High Spatial Resolution Quantitative Electron Beam
Microanalysis for Nanoscale Materials37
2.1Introduction 37
2.2The Nanomaterials Characterization Challenge: Bulk Nanostructures
and Discrete Nanoparticles37
2.2.1Bulk Nanostructures38
2.2.2Nanoparticles40
2.3Physical Basis of the Electron\|Excited
Analytical Spectrometries40
2.4Nanoscale Elemental Characterization with High
Electron Beam Energy42
2.4.1EELS42
2.4.2X\|ray Spectrometry48
2.5Nanoscale Elemental Characterization with Low and
Intermediate Electron Beam Energy55
2.5.1Intermediate Beam Energy X\|ray Microanalysis56
2.5.2Low Beam Energy X\|ray Microanalysis:
Bulk Nanostructures59
2.5.3Auger Spectrometry62
2.5.4Elemental Mapping65
2.6Examples of Applications to Nanoscale Materials65
2.6.1Analytical Electron Microscopy65
2.6.2Low Voltage SEM69
2.6.3Auger/X\|ray SEM73
2.7Conclusions73
References743Characterization of Nano\|Crystalline Materials Using Electron
Backscatter Diffraction in the Scanning Electron Microscope77
3.1Introduction77
3.2Historical Development of EBSD78
3.3Origin of EBSD Patterns79
3.3.1Collection of EBSD Patterns80
3.3.2Automated Orientation Mapping83
3.4Resolution of EBSD84
3.4.1Lateral Resolution84
3.4.2Depth Resolution88
3.5Sample Preparation of Nano\|Materials for EBSD88
3.6Applications of EBSD to Nano\|Materials89
3.6.1Heteroepitaxy of Boron Arsenide on \[0001\] 6H\|Sic89
3.6.2Electrodeposited Ni for MEMS Applications91
3.6.3Polycrystalline Si For MEMS Applications93
3.7Summary95
References954High Resolution Transmission Electron Microscopy97
4.1HRTEM and Nanotechnology97
4.2Principles and Practice of HRTEM97
4.2.1Basis of Image Formation97
4.2.2Definitions of Resolution99
4.2.3Lattice Imaging or Atomic Imaging101
4.2.4Instrumental Parameters102
4.2.5Further Requirements103
4.2.6Milestones104
4.3Applications of HRTEM105
4.3.1Semiconductors105
4.3.2Metals107
4.3.3Oxides and Ceramics110
4.3.4Surfaces112
4.3.5Dynamic Events113
4.4Current Trends114
4.4.1Image Viewing and Recording114
4.4.2On\|Line Microscope Control115
4.4.3Detection and Correction of Third\|Order
Aberrations116
4.4.4Quantitative HRTEM117
4.4.5Aberration\|Corrected HRTEM118
4.5Ongoing Problems119
4.5.1The Stobbs’ Factor119
4.5.2Radiation Damage120
4.5.3Inversion of Crystal Scattering120
4.6Summary and Future Perspective121
References1215Scanning Transmission Electron Microscopy127
5.1Introduction127
5.2STEM Imaging131
5.3STEM Imaging of Crystals138
5.3.1Very Thin Crystals138
5.3.2Dynamical Diffraction Effects140
5.3.3Channeling141
5.4Diffraction in STEM Instruments142
5.4.1Scanning Mode Electron Diffraction142
5.4.2Two\|Dimensional Recording Systems142
5.4.3Convergent\|Beam Electron Diffraction143
5.4.4Coherent Nanodiffraction145
5.5Microanalysis in STEM146
5.5.1Electron Energy Loss Spectroscopy and Imaging146
5.5.2Secondary Emissions146
5.6Studies of Nanoparticles and Nanotubes147
5.6.1Nanoparticles147
5.6.2Nanotubes and Nanoshells148
5.7Studies of Crystal Defects and Interfaces150
5.8The Structure and Composition of Surfaces152
5.8.1Ultra\|High Vacuum Instruments152
5.8.2Reflection Electron Microscopy152
5.8.3Surface Channeling Effects154
5.8.4MEED and MEEM154
5.9Amorphous Materials154
5.9.1Thin Quasi\|Amorphous Films154
5.9.2Thick Amorphous Films155
5.10STEM Holography156
5.10.1Gabor’s In\|Line Holography156
5.10.2Off\|Axis Holography157
5.11Ultra\|High\|Resolution STEM159
5.11.1Atomic Focusers159
5.11.2Aberration Correction159
5.11.3Combining Nanodiffraction and Imaging161
5.12Conclusions162
References1636In\|situ Electron Microscopy for Nanomeasurements169
6.1Introduction169
6.2Thermal Induced Surface Dynamic Processes
of Nanocrystals169
6.3Measuring Dynamic Bending Modulus by
Electric Field Induced Mechanical Resonance171
6.3.1Young’s Modulus Measured by Quantifying
Thermal Vibration Amplitude171
6.3.2Bending Modulus by Electric Field Induced
Mechanical Resonance173
6.4Young’s Modulus of Composite Nanowires181
6.5Bending Modulus of Oxide Nanobelts184
6.5.1Nanobelts184
6.5.2Dual\|mode Resonance of Nanobelts185
6.5.3Bending Modulus of Nanobelt187
6.6Nanobelts as Nanocantilevers188
6.7In\|situ Field Emission from Nanotube189
6.8Work Function at the Tips of Nanotubes and Nanobelts190
6.9Mapping the Electrostatic Potential at the Nanotube Tips193
6.10Field Emission Induced Structural Damage195
6.11Nanothermometer and Nanobearing197
6.12In\|situ Transport Measurement of Nanotubes197
6.12.1Ballistic Quantum Conductance at Room
Temperature197
6.12.2Quantum Conductance and Surface
Contamination199
6.12.3Top Layer Transport in MWNT203
6.13Summary204
References2057Environmental Transmission Electron Microscopy
in Nanotechnology209
7.1Introduction209
7.2History of ETEM211
7.2.1Early Developments211
7.2.2Later Developments and Current Status212
7.3Data Collection215
7.3.1Real\|Time Imaging Systems215
7.3.2Spectroscopy and Chemical Analysis217
7.4Experimental Design Strategies218
7.5Applications to Nanomaterials220
7.5.1Transformation Mechanisms in Nanostructures
due to Gas\|solid Reactions220
7.5.2Controlled Synthesis of Nanostructures229
7.5.3Kinetics233
7.6Conclusions239
References2408Electron Nanocrystallography243
8.1Introduction 243
8.2Electron Diffraction Modes and Geometry244
8.2.1Selected Area Electron Diffraction245
8.2.2Nano\|Area Electron Diffraction246
8.2.3Convergent Beam Electron Diffraction247
8.3Theory of Electron Diffraction249
8.3.1Kinematic Electron Diffraction
and Electron Atomic Scattering249
8.3.2Kinematical Electron Diffraction from an Assembly
of Atoms251
8.3.3Geometry of Electron Diffraction
from Perfect Crystals254
8.3.4The Geometry of a CBED Pattern257
8.3.5Electron Dynamic Theory—
the Bloch Wave Method257
8.4Experimental Analysis260
8.4.1Experimental Diffraction Pattern Recording260
8.4.2The Phase Problem and Inversion262
8.4.3The Refinement Technique263
8.4.4Electron Diffraction Oversampling and Phase Retrieval
for Nanomaterials267
8.5Applications to Nanostructure Characterization268
8.5.1Structure Determination of Individual
Single\|Wall Carbon Nanotubes268
8.5.2The Structure of Supported Small Nanoclusters
and Epitaxy271
8.5.3Crystal Charge Density273
8.6Conclusions and Future Perspectives275
References2759Tomography Using the Transmission
Electron Microscope279
9.1Introduction279
9.2Tomography281
9.2.1A History of Tomography281
9.2.2The Radon Transform282
9.2.3The Central Slice Theorem and Fourier
Space Reconstruction283
9.2.4Real Space Reconstruction Using Backprojection284
9.3Tomography in the Electron Microscope287
9.3.1Acquisition287
9.3.2Alignment288
9.3.3Anisotropic Resolution289
9.3.4The Projection Requirement292
9.4STEM HAADF Tomography293
9.5EFTEM Tomography299
9.6Conclusions302
References30310Off\|Axis Electron Holography307
10.1Electron Holography and Nanotechnology307
10.2Description of Off\|Axis Electron Holography308
10.2.1Experimental Set\|up308
10.2.2Basic Imaging Theory
and Hologram Reconstruction310
10.2.3Phase Shifts and Mean Inner Potential312
10.2.4Quantification314
10.2.5Practical Considerations315
10.3Nanoscale Electrostatic Fields316
10.3.1Dopant Profiles317
10.3.2Piezoelectric Fields317
10.3.3Charged Defects318
10.3.4Field\|Emitting Carbon Nanotubes320
10.3.5Thickness and Sample Morphology321
10.4Nanoscale Magnetic Fields321
10.4.1Patterned Nanostructures322
10.4.2Nanoparticle Chains325
10.5Future Perspectives327
References32811Sub\|nm Spatially Resolved EELS(Electron Energy\|Loss Spectroscopy):
Methods,Theory and Applications331
11.1Introduction: EELS and Nanotechnology331
11.2Understanding the Information Contained
in an EELS Spectrum332
11.2.1Definition of an EELS Spectrum and of the Basic
Information Which It Contains332
11.2.2Basic Tools Developed for Interpreting and
Using Core\|Loss Signals336
11.3Spatially Resolved EELS341
11.3.1The 3D Data Cube341
11.3.2Instrumentation Required for Recording
the 3D Data Cube,Definition and Estimate
of the Spatial and Energy Resolutions343
11.4Elemental Mapping of Individual Nanoparticles
Using Core\|loss Signals348
11.4.1Data Processing Routines: Background Subtraction,
Multiple Least Square Fitting348
11.4.2A Few Examples of Elemental Mapping with
EELS Core Edges350
11.4.3Sensitivity,Limits of Detection
in EELS Elemental Mapping352
11.5Mapping Bonding States and Electronic Structures with ELNES
Features352
11.5.1A Few Selected Examples353
11.5.2From Fingerprint Techniques to Interpretations Requiring
Extended Theoretical Calculations355
11.6Conclusions357
References35712Imaging Magnetic Structures Using TEM361
12.1Introduction361
12.2Lorentz Microscopy362
12.2.1Introduction362
12.2.2Magnetic\|Shield Lens362
12.2.3Deflection Angle Due to Lorentz Force363
12.2.4Fresnel Mode364
12.2.5Foucault Mode371
12.2.6Lorentz Phase Microscopy372
12.3Electron Holography376
12.3.1Introduction376
12.3.2Observation of Single Magnetic
Domain Particles377
12.3.3Real\|time Observation377
12.3.4High\|precision Observation381
12.4Summary392
References392Index395
1.1Introduction: Scanning Electron Microscopy
and Nanotechnology1
1.2Electron\|Specimen Interactions5
1.2.1Electron\|Specimen Interactions in
Homogeneous Materials6
1.2.2Electron\|Speciment Interactions in
Composite Samples8
1.3Instrumentation of/the Scanning Electron Microscope10
1.3.1General Description10
1.3.2Performance of a Scanning Electron Microscope13
1.4The Resolution of Secondary
and Backscattered Electron Images18
1.5Contrast Mechanisms of SE and BE Images of Nanoparticles
and Other Systems21
1.5.1Small Particle Contrast in High\|Resolution
BE Images22
1.5.2Small Particle Contrast in High\|Resolution
SE Images25
1.5.3Other Contrast Mechanisms28
1.6Applications to Characterizing Nanophase Materials29
1.7Summary and Perspectives32
References352High Spatial Resolution Quantitative Electron Beam
Microanalysis for Nanoscale Materials37
2.1Introduction 37
2.2The Nanomaterials Characterization Challenge: Bulk Nanostructures
and Discrete Nanoparticles37
2.2.1Bulk Nanostructures38
2.2.2Nanoparticles40
2.3Physical Basis of the Electron\|Excited
Analytical Spectrometries40
2.4Nanoscale Elemental Characterization with High
Electron Beam Energy42
2.4.1EELS42
2.4.2X\|ray Spectrometry48
2.5Nanoscale Elemental Characterization with Low and
Intermediate Electron Beam Energy55
2.5.1Intermediate Beam Energy X\|ray Microanalysis56
2.5.2Low Beam Energy X\|ray Microanalysis:
Bulk Nanostructures59
2.5.3Auger Spectrometry62
2.5.4Elemental Mapping65
2.6Examples of Applications to Nanoscale Materials65
2.6.1Analytical Electron Microscopy65
2.6.2Low Voltage SEM69
2.6.3Auger/X\|ray SEM73
2.7Conclusions73
References743Characterization of Nano\|Crystalline Materials Using Electron
Backscatter Diffraction in the Scanning Electron Microscope77
3.1Introduction77
3.2Historical Development of EBSD78
3.3Origin of EBSD Patterns79
3.3.1Collection of EBSD Patterns80
3.3.2Automated Orientation Mapping83
3.4Resolution of EBSD84
3.4.1Lateral Resolution84
3.4.2Depth Resolution88
3.5Sample Preparation of Nano\|Materials for EBSD88
3.6Applications of EBSD to Nano\|Materials89
3.6.1Heteroepitaxy of Boron Arsenide on \[0001\] 6H\|Sic89
3.6.2Electrodeposited Ni for MEMS Applications91
3.6.3Polycrystalline Si For MEMS Applications93
3.7Summary95
References954High Resolution Transmission Electron Microscopy97
4.1HRTEM and Nanotechnology97
4.2Principles and Practice of HRTEM97
4.2.1Basis of Image Formation97
4.2.2Definitions of Resolution99
4.2.3Lattice Imaging or Atomic Imaging101
4.2.4Instrumental Parameters102
4.2.5Further Requirements103
4.2.6Milestones104
4.3Applications of HRTEM105
4.3.1Semiconductors105
4.3.2Metals107
4.3.3Oxides and Ceramics110
4.3.4Surfaces112
4.3.5Dynamic Events113
4.4Current Trends114
4.4.1Image Viewing and Recording114
4.4.2On\|Line Microscope Control115
4.4.3Detection and Correction of Third\|Order
Aberrations116
4.4.4Quantitative HRTEM117
4.4.5Aberration\|Corrected HRTEM118
4.5Ongoing Problems119
4.5.1The Stobbs’ Factor119
4.5.2Radiation Damage120
4.5.3Inversion of Crystal Scattering120
4.6Summary and Future Perspective121
References1215Scanning Transmission Electron Microscopy127
5.1Introduction127
5.2STEM Imaging131
5.3STEM Imaging of Crystals138
5.3.1Very Thin Crystals138
5.3.2Dynamical Diffraction Effects140
5.3.3Channeling141
5.4Diffraction in STEM Instruments142
5.4.1Scanning Mode Electron Diffraction142
5.4.2Two\|Dimensional Recording Systems142
5.4.3Convergent\|Beam Electron Diffraction143
5.4.4Coherent Nanodiffraction145
5.5Microanalysis in STEM146
5.5.1Electron Energy Loss Spectroscopy and Imaging146
5.5.2Secondary Emissions146
5.6Studies of Nanoparticles and Nanotubes147
5.6.1Nanoparticles147
5.6.2Nanotubes and Nanoshells148
5.7Studies of Crystal Defects and Interfaces150
5.8The Structure and Composition of Surfaces152
5.8.1Ultra\|High Vacuum Instruments152
5.8.2Reflection Electron Microscopy152
5.8.3Surface Channeling Effects154
5.8.4MEED and MEEM154
5.9Amorphous Materials154
5.9.1Thin Quasi\|Amorphous Films154
5.9.2Thick Amorphous Films155
5.10STEM Holography156
5.10.1Gabor’s In\|Line Holography156
5.10.2Off\|Axis Holography157
5.11Ultra\|High\|Resolution STEM159
5.11.1Atomic Focusers159
5.11.2Aberration Correction159
5.11.3Combining Nanodiffraction and Imaging161
5.12Conclusions162
References1636In\|situ Electron Microscopy for Nanomeasurements169
6.1Introduction169
6.2Thermal Induced Surface Dynamic Processes
of Nanocrystals169
6.3Measuring Dynamic Bending Modulus by
Electric Field Induced Mechanical Resonance171
6.3.1Young’s Modulus Measured by Quantifying
Thermal Vibration Amplitude171
6.3.2Bending Modulus by Electric Field Induced
Mechanical Resonance173
6.4Young’s Modulus of Composite Nanowires181
6.5Bending Modulus of Oxide Nanobelts184
6.5.1Nanobelts184
6.5.2Dual\|mode Resonance of Nanobelts185
6.5.3Bending Modulus of Nanobelt187
6.6Nanobelts as Nanocantilevers188
6.7In\|situ Field Emission from Nanotube189
6.8Work Function at the Tips of Nanotubes and Nanobelts190
6.9Mapping the Electrostatic Potential at the Nanotube Tips193
6.10Field Emission Induced Structural Damage195
6.11Nanothermometer and Nanobearing197
6.12In\|situ Transport Measurement of Nanotubes197
6.12.1Ballistic Quantum Conductance at Room
Temperature197
6.12.2Quantum Conductance and Surface
Contamination199
6.12.3Top Layer Transport in MWNT203
6.13Summary204
References2057Environmental Transmission Electron Microscopy
in Nanotechnology209
7.1Introduction209
7.2History of ETEM211
7.2.1Early Developments211
7.2.2Later Developments and Current Status212
7.3Data Collection215
7.3.1Real\|Time Imaging Systems215
7.3.2Spectroscopy and Chemical Analysis217
7.4Experimental Design Strategies218
7.5Applications to Nanomaterials220
7.5.1Transformation Mechanisms in Nanostructures
due to Gas\|solid Reactions220
7.5.2Controlled Synthesis of Nanostructures229
7.5.3Kinetics233
7.6Conclusions239
References2408Electron Nanocrystallography243
8.1Introduction 243
8.2Electron Diffraction Modes and Geometry244
8.2.1Selected Area Electron Diffraction245
8.2.2Nano\|Area Electron Diffraction246
8.2.3Convergent Beam Electron Diffraction247
8.3Theory of Electron Diffraction249
8.3.1Kinematic Electron Diffraction
and Electron Atomic Scattering249
8.3.2Kinematical Electron Diffraction from an Assembly
of Atoms251
8.3.3Geometry of Electron Diffraction
from Perfect Crystals254
8.3.4The Geometry of a CBED Pattern257
8.3.5Electron Dynamic Theory—
the Bloch Wave Method257
8.4Experimental Analysis260
8.4.1Experimental Diffraction Pattern Recording260
8.4.2The Phase Problem and Inversion262
8.4.3The Refinement Technique263
8.4.4Electron Diffraction Oversampling and Phase Retrieval
for Nanomaterials267
8.5Applications to Nanostructure Characterization268
8.5.1Structure Determination of Individual
Single\|Wall Carbon Nanotubes268
8.5.2The Structure of Supported Small Nanoclusters
and Epitaxy271
8.5.3Crystal Charge Density273
8.6Conclusions and Future Perspectives275
References2759Tomography Using the Transmission
Electron Microscope279
9.1Introduction279
9.2Tomography281
9.2.1A History of Tomography281
9.2.2The Radon Transform282
9.2.3The Central Slice Theorem and Fourier
Space Reconstruction283
9.2.4Real Space Reconstruction Using Backprojection284
9.3Tomography in the Electron Microscope287
9.3.1Acquisition287
9.3.2Alignment288
9.3.3Anisotropic Resolution289
9.3.4The Projection Requirement292
9.4STEM HAADF Tomography293
9.5EFTEM Tomography299
9.6Conclusions302
References30310Off\|Axis Electron Holography307
10.1Electron Holography and Nanotechnology307
10.2Description of Off\|Axis Electron Holography308
10.2.1Experimental Set\|up308
10.2.2Basic Imaging Theory
and Hologram Reconstruction310
10.2.3Phase Shifts and Mean Inner Potential312
10.2.4Quantification314
10.2.5Practical Considerations315
10.3Nanoscale Electrostatic Fields316
10.3.1Dopant Profiles317
10.3.2Piezoelectric Fields317
10.3.3Charged Defects318
10.3.4Field\|Emitting Carbon Nanotubes320
10.3.5Thickness and Sample Morphology321
10.4Nanoscale Magnetic Fields321
10.4.1Patterned Nanostructures322
10.4.2Nanoparticle Chains325
10.5Future Perspectives327
References32811Sub\|nm Spatially Resolved EELS(Electron Energy\|Loss Spectroscopy):
Methods,Theory and Applications331
11.1Introduction: EELS and Nanotechnology331
11.2Understanding the Information Contained
in an EELS Spectrum332
11.2.1Definition of an EELS Spectrum and of the Basic
Information Which It Contains332
11.2.2Basic Tools Developed for Interpreting and
Using Core\|Loss Signals336
11.3Spatially Resolved EELS341
11.3.1The 3D Data Cube341
11.3.2Instrumentation Required for Recording
the 3D Data Cube,Definition and Estimate
of the Spatial and Energy Resolutions343
11.4Elemental Mapping of Individual Nanoparticles
Using Core\|loss Signals348
11.4.1Data Processing Routines: Background Subtraction,
Multiple Least Square Fitting348
11.4.2A Few Examples of Elemental Mapping with
EELS Core Edges350
11.4.3Sensitivity,Limits of Detection
in EELS Elemental Mapping352
11.5Mapping Bonding States and Electronic Structures with ELNES
Features352
11.5.1A Few Selected Examples353
11.5.2From Fingerprint Techniques to Interpretations Requiring
Extended Theoretical Calculations355
11.6Conclusions357
References35712Imaging Magnetic Structures Using TEM361
12.1Introduction361
12.2Lorentz Microscopy362
12.2.1Introduction362
12.2.2Magnetic\|Shield Lens362
12.2.3Deflection Angle Due to Lorentz Force363
12.2.4Fresnel Mode364
12.2.5Foucault Mode371
12.2.6Lorentz Phase Microscopy372
12.3Electron Holography376
12.3.1Introduction376
12.3.2Observation of Single Magnetic
Domain Particles377
12.3.3Real\|time Observation377
12.3.4High\|precision Observation381
12.4Summary392
References392Index395
猜您喜欢