书籍详情
有限元法:英文版(第2卷)
作者:( )O.C.Zienkiewicz,( )R.L.Taylor著
出版社:世界图书出版公司北京公司
出版时间:2005-01-01
ISBN:9787506265485
定价:¥79.00
购买这本书可以去
内容简介
这是一套在国际上颇具权威性的经典著作(共3卷),由有限元法的创始人Zienkiewicz教授和美国加州大学Taylor教授合作撰写。本书初版于1967年,以后经过多次修订再版,深受力学界和工程界科技人员的欢迎。本套书的特点是理论可靠,内容全面,既有基础理论,又有其具体应用。适用于计算力学、力学、土木、水利、机械、航天航空等领域的专家、教授、工程技术人员和研究生。
作者简介
暂缺《有限元法:英文版(第2卷)》作者简介
目录
Preface to Volume 2
1. General problems in solid mecbanics and non-linearity
1.1 Introduction
1.2 Small deformation nondinear solid mechanics problems
1.3 Non-linear quasi harmonic field problems
1.4 Some typical examples of tr msient non-linear calculations
1.5 Concluding remarks
References
2 Solution of non-linear algebraie equations
2.1 Introduction
2.2 Iterafive techniques
References
3 Inelastic and non-linear materials
3.1 Introduction
3.2 Viscoelasticity history dependence ofdeforma on
3.3 Classical timedndependent plasticity theory
3.4 Computation of stress increments
3.5 lsotropie plasticity models
3.6 Generalized plasticity non-associative case
3.7 Some examples of plastic computation
3.8 Basic formulafion of creep problems
3.9 Viscoplasticity a generalization
3.10 Some special problems of brit tie materials
3.11 Non-uniqueness and localization in elast o-plastic deformations
3.12 Adaptive refinement and localization (slip line) capture
3.13 Non-linear q uasi-hannonic field problems
References
4. Plate bending approximation: thin (Kircbbofi) plates and c1 continuity requirements
4.1 Introduction
4.2 The piale problem: thick and thin formulations
4.3 Rectangular element with corner nodes (12 degrees of freedom)
4.4 Quadrilateral and parallelogram elements
4.5 Triangular element with corner nodes (9 degrees of freedom)
4.6 Triangular element of the simplest form (6 degrees of freedom)
4.7 The patch test an analytical requirement
4.8 Numerical examples
4.9 General remarks
4.10 Singular shape functions for the simple triangular element
4.11 An 18 degree of-freedom triangular element with conforming
shape functions
4.12 Compatible quadrdateral element
4.13 Quasi-confoming elements
4.14 Hermitian rectangle shape function
4.15 The 21 and 18 degree-of-freedom triangle
4.16 Mixed forulations - general remarks
4.17 Hybrid plate elements
4.18 Discrte Kirchhoffconstraints
4.20 Inelastic material behaviour
4.21 Concluding remarks - which elements?
References
5 'Thick' Reissner Mindlin plates - irreducible and mixed formuladons
5.1 Introduction
5.2 The irreducible formutation reduced integration
5.3 Mixed formulation for thick plates
5.4 The patch test for plate bending elements
5.5 Elements with discrete collocation constraints
5.6 Elements wilh rotational bubble or enhanced modes
5.7 Linked interpolation an improvement of accuracy
5.8 Discrete "exact' thin plate limit
5.9 Performance of various 'thick' plate elements lindtations of
thin plate theory
5.10 Forms without rotation parameters
5.11 Inelastic material behaviour
5.12 Concluding remarks adaptive refinement
References
6. Shegs as an assembly of flat elements
6.1 Introduction
6.2 Stiffness of a plane element in local coordinates
6.3 Transformation to globM coordinates and assembly of elements
6.4 Local direction cosines
6.5 'Drilling' rotational stiffness 6 degree of-freedom assembly
6.6 Elements with mid-side slope connections only
6.7 Choice of element
6.8 Practical examples
References
7. Axisymmetric shells
8. Shells as a special case of three-dimensional analysis-Reissner-Mindlin assumptions
9. Semi-analytical finite element processes-usr of orthogonal functions and 'finite strip'methods
10. Geometrically non-linear problems-finite deformation
11. Non-linear stuctural problems-large displacement and instability
12. Pseudo-rigid and rigid-flexible bodies
13. Computr procedures for finite element analysis
Appendix A:Invariants of second-order tensors
Author index
Subject index
1. General problems in solid mecbanics and non-linearity
1.1 Introduction
1.2 Small deformation nondinear solid mechanics problems
1.3 Non-linear quasi harmonic field problems
1.4 Some typical examples of tr msient non-linear calculations
1.5 Concluding remarks
References
2 Solution of non-linear algebraie equations
2.1 Introduction
2.2 Iterafive techniques
References
3 Inelastic and non-linear materials
3.1 Introduction
3.2 Viscoelasticity history dependence ofdeforma on
3.3 Classical timedndependent plasticity theory
3.4 Computation of stress increments
3.5 lsotropie plasticity models
3.6 Generalized plasticity non-associative case
3.7 Some examples of plastic computation
3.8 Basic formulafion of creep problems
3.9 Viscoplasticity a generalization
3.10 Some special problems of brit tie materials
3.11 Non-uniqueness and localization in elast o-plastic deformations
3.12 Adaptive refinement and localization (slip line) capture
3.13 Non-linear q uasi-hannonic field problems
References
4. Plate bending approximation: thin (Kircbbofi) plates and c1 continuity requirements
4.1 Introduction
4.2 The piale problem: thick and thin formulations
4.3 Rectangular element with corner nodes (12 degrees of freedom)
4.4 Quadrilateral and parallelogram elements
4.5 Triangular element with corner nodes (9 degrees of freedom)
4.6 Triangular element of the simplest form (6 degrees of freedom)
4.7 The patch test an analytical requirement
4.8 Numerical examples
4.9 General remarks
4.10 Singular shape functions for the simple triangular element
4.11 An 18 degree of-freedom triangular element with conforming
shape functions
4.12 Compatible quadrdateral element
4.13 Quasi-confoming elements
4.14 Hermitian rectangle shape function
4.15 The 21 and 18 degree-of-freedom triangle
4.16 Mixed forulations - general remarks
4.17 Hybrid plate elements
4.18 Discrte Kirchhoffconstraints
4.20 Inelastic material behaviour
4.21 Concluding remarks - which elements?
References
5 'Thick' Reissner Mindlin plates - irreducible and mixed formuladons
5.1 Introduction
5.2 The irreducible formutation reduced integration
5.3 Mixed formulation for thick plates
5.4 The patch test for plate bending elements
5.5 Elements with discrete collocation constraints
5.6 Elements wilh rotational bubble or enhanced modes
5.7 Linked interpolation an improvement of accuracy
5.8 Discrete "exact' thin plate limit
5.9 Performance of various 'thick' plate elements lindtations of
thin plate theory
5.10 Forms without rotation parameters
5.11 Inelastic material behaviour
5.12 Concluding remarks adaptive refinement
References
6. Shegs as an assembly of flat elements
6.1 Introduction
6.2 Stiffness of a plane element in local coordinates
6.3 Transformation to globM coordinates and assembly of elements
6.4 Local direction cosines
6.5 'Drilling' rotational stiffness 6 degree of-freedom assembly
6.6 Elements with mid-side slope connections only
6.7 Choice of element
6.8 Practical examples
References
7. Axisymmetric shells
8. Shells as a special case of three-dimensional analysis-Reissner-Mindlin assumptions
9. Semi-analytical finite element processes-usr of orthogonal functions and 'finite strip'methods
10. Geometrically non-linear problems-finite deformation
11. Non-linear stuctural problems-large displacement and instability
12. Pseudo-rigid and rigid-flexible bodies
13. Computr procedures for finite element analysis
Appendix A:Invariants of second-order tensors
Author index
Subject index
猜您喜欢