书籍详情
电子电路设计基础(英文版)
作者:(美)Richard R.Spencer,(美)Mohammed S.Ghausi著
出版社:电子工业出版社
出版时间:2004-01-01
ISBN:9787505395787
定价:¥98.00
购买这本书可以去
内容简介
本书的主要内容有:电子电路设计,半导体物理与电子器件,固态器件制造,计算机辅助设计的工具与技巧,运算放大器,小信号线性与放大,直流偏置,低频小信号交流分析与放大器,放大器频率响应,反馈,滤波器与调制放大器,低频大信号交流分析,数据转换器,门级数字电路,晶体管级数字电路。本书按照逻辑(而不是按照顺序)对内容进行组织,使读者在某个设计过程中能够对不同类型的分析进行比较。本书的特点如下:利用一个普通的晶体管介绍许多适用于FET和BJT电路基本原理;将复杂问题进行分解;提供全面的针对练习的解决方案;等等。本书的主要内容有:电子电路设计,半导体物理与电子器件,固态器件制造,计算机辅助设计的工具与技巧,运算放大器,小信号线性与放大,直流偏置,低频小信号交流分析与放大器,放大器频率响应,反馈,滤波器与调制放大器,低频大信号交流分析,数据转换器,门级数字电路,晶体管级数字电路。
作者简介
暂缺《电子电路设计基础(英文版)》作者简介
目录
Part I The Foundations of Electronic Circuit Design
Chapter I Electronic Circuit Design 1
1.1 The Process of Design 2
1.2 Analysis for Design 3
1.2.1 Frequency-Independent Analysis for Design 3
1.2.2 Frequency-Dependent Analysis for Design 12
1.3 Electronic Systems 19
1.3.1 Electronic versus Electric Circuits 19
1.3.2 Analog and Digital Electronic Circuits 21
1.3.3 Modeling Electronic Systems 25
1.3.4 Discrete, Integrated, and Hybrid Circuits 30
1.4 Notation 31
Solutions to Exercises 32
Chapter Summary 34
References 35
Problems 35
Chapter 2 Semiconductor Physics and Electronic Devices 43
2. 1 Material Properties 44
2.1.1 Crystal Structure 44
2.1.2 Conductors, Insulators, and Semiconductors 45
2.1.3 Generation and Recombination 47
2.2 Conduction Mechanisms 48
2.2.1 Diffusion 48
2.2.2 Drift 49
2.3 Conductor-to-Semiconductor Contacts 52
2.3.1 Rectifying Contacts 55
2.3.2 Ohmic Contacts 59
2.4 pn-junetion Diodes 61
2.4.1 Intuitive Treatment 62
2.4.2 Detailed Analysis of Current Flow 66
2.4.3 Minority-Carrier Profiles 73
2.4.4 Summary of Current Flow 75
2.4.5 Charge Storage and Varactor Diodes 77
2.4.6 Breakdown and Zener Diodes 80
2.4.7 Other Types of Diodes 84
2.5 Bipolar Junction Transistors (BJTs) 85
2.5.1 Intuitive Treatment 87
2.5.2 Detailed Analysis of Current Flow 87
2.5.3 Base Current 92
2.5.4 Base-Width Modulation (The Early Effect) 98
2.5.5 Charge Storage 116
2.5.6 Breakdown Voltages 96
2.5.7 Other Types of Junction Transistors 98
2.6 Metal-Oxide Semiconductor Field-Effect Transistors
(MOSFETs) 98
2.6.1 Intuitive Treatment 99
2.6.2 Detailed Analysis of Current Flow 103
2.6.3 Channel-Length Modulation 115
2.6.4 Charge Storage 116
2.6.5 The Effect of Bulk Bias 118
2.6.6 Breakdown 119
2.6.7 Short- and Narrow-Channel Effects 120
2.7 Junction Field-Effect Transistors (JFETs) 122
2.7.1 Intuitive Treatment 122
2.7.2 Detailed Analysis of Current Flow 124
2.7.3 Second-Order Effects 127
2.8 Metal-Semiconductor FETs (MOSFETs) 129
2.9 Silicon Controlled Rectifier and Power Handling Devices 130
2.10 Comparison of Devices 133
Solutions to Exercises 134
Chapter Summary 136
References 137
Problems 137
Chapter 3 Solid-State Device Fabrication 145
3.1 CMOS Technology 146
3.1.1 The Beginning: Choosing a Substrate 146
3.1.2 Active Region Formation 147
3.1.3 N and P Well Formation 150
3.1.4 Gate Formation 152
3.1.5 Tip or Extension (LDD) Formation 156
3.1.6 Source/Drain Formation 158
3.1.7 Contact and Local Interconnect Formation 160
3.1.8 Multilevel Metal Formation 162
3.1.9 Electrical Model Related to Physical Structure 166
3.2 Bipolar Teclmology 167
3.2.1 Device Fabrication 167
3.2.2 Electrical Model Related to Physical Structure 168
Chapter Summary 168
References 169
Problems 169
Chapter 4 Computer-Aided Design: Tools and Teehniques 171
4.1 Overview of Simulation Techniques 172
4.1.1 Analog Systems 172
4.1.2 Digital Systems 173
4.1.3 Mixed Analog and Digital Systems 174
4.2 Circuit Simulation Using SPICE 175
4.21 SPICE Input and Output 175
4.2.2 Simulation Modes andTypes of Analysis 177
4.3 Circuit Elements and Models for SPICE 183
4.3.1 Sources 183
4.3.2 Passive Devices 184
4.3.3 Diodes 184
4.3.4 Bipolar Junction Transistors 186
4.3.5 MOS Field-Effect Transistors 193
4.3.6 Junction Field-effect Transistors and MOSFETs 198
4.4 Macro Models in SPICE 198
Solutions to Exercises 200
Chapter Summary 204
References 204
Problems 205
Part 2 Analog Electronic Circuit Design
Chapter 5 Operational Amplifiers 211
5.1 Basic Op Amp Circuits 212
5.1.1 The Noninverting Amplifier 212
5.1.2 The Inverting Amplifier 215
5.1.3 The Unity-Gain Amplifier, or Voltage Follower 217
5.1.4 The Differential Amplifier 217
5.1.5 The Instrumentation Amplifier 225
5.1.6 Current Sources 226
5.1.7 Voltage Regulators 227
5.2 Frequency-Dependent Op Amp Circuits 228
5.2.1 The Integrator and First-Order Low-Pass Filter 228
5.2.2 The Differentiator and First-Order High-Pass Filter 231
5.2.3 Second-Order Filters 232
5.3 Nonlinear Op Amp Circuits 235
5.3.1 Comparators 235
5.3.2 Precision Rectification and Clipping 237
5.3.3 Logarithmic Amplifiers 238
5.4 Nonideal Characteristics of Op Amps 239
5.4.1 Finite Gain 240
5.4.2 Input Bias and Offset Currents 241
5.4.3Input Offset Voltage 243
5.4.4 Finite Input and Output Impedances 244
5.4.5 Finite Bandwidth 246
5.4.6 Common-Mode Rejection Ratio and Power-Supply
Rejection Ratio 249
5.4.7 Output Swing Revisited 253
5. 4. 8 Slew Rate and FuU-Power Bandwidth 253
5. 4. 9 Noise 255
5. 4. 10 Op Amp Parameter Measurement 255
Solutions to Exercises 257
Chapter Summary 258
References 259
Problems 259
Chapter 6 Small-Signal Linearity and Amplification 271
6. 1 Linear Time-Invariant Networks 272
6. 1 Nonlinear Circuit Analysis 273
6. 2. 1 Analytical Solution 273
6. 2. 2 Graphical Solution 274
6. 2. 3 Solving with Models 274
6. 3 Small-Signal Analysis 276
6. 3. 1 An Alternate View of the Small-Signal
Approximation 281
6. 3. 2 Accuracy of the Small-Signal Approximation 282
6. 4 Small-Signal Amplifiers 282
6. 4. 1 Small-signal Models for Transistors 282
6. 4. 2 Example Application 286
6. 5 Types of Amplifiers 288
6. 5. 4 Two-Port Models for Amplifiers 288
6. 5. 2 AC-and DC-coupled Transfer Functions 292
Solutions to Exercises 294
Chapter Summary 296
References 296
Problems 296
Chapter 7 DC Biasing 301
7. 1 DC and Large-Signal Low-Frequency Models for Design 302
7. 1. 1 Independent Sources 302
7.1.2 Linear Passive Devices (Rs, Ls, & Cs) 303
7.1.3 Diodes 304
7.1.4 Bipolar Junction Transistors 309
7.1.5 MOS Field-Effect Transistors 315
7.1.6 Junction Field-Effect Transistors 323
7.1.7 Comparison-of Bipolar and Field-Effect Transistor
Biasing 324
7.2 Biasing of Single-Stage Amplifiers 325
7.2.1 BJT Amplifiers 325
7.2.2 FET Amplifiers 332
7.3 Biasing of Multistage Amplifiers 341
7.3.1 Cascaded Bipolar Amplifiers 341
7.3.2 Cascaded FET Amplifiers 342
7.4 Biasing for Integrated Circuits 342
7.4.1 Simple Bipolar Current Mirrors 345
7.4.2 More Advanced Bipolar Current Mirrors 346
7.4.3 FET Current Mirrors 348
7.5 Biasing of Differential Amplifiers 350
7.6 Worst-Case Analysis and Parameter Variation 353
Solutions to Exercises 356
Chapter Summary 358
References 359
Problems 359
Chapter 8 Low-Frequency Small-Signal AC Analyis and Amplifiers 371
8.1 Low-Frequency Small-Signal Models for Design 372
8.1.1 Independent Sources 372
8.1.2 Linear Passive Devices (Rs, Ls, & Cs) 373
8.1.3 Diodes 376
8.1.4 The Generic Transistor 377
8.1.5 Bipolar Junction Transistors 379
8.1.6 MOS Field-Effect Transistors 386
8.1.7 Junction Field-Effect Transistors 389
8.1.8 Comparison of Bipolar and Field-Effect Transistors 390
8.2 Stages with Voltage and Current Gain 391
8.2.1 A Generic Implementation: The Common-Merge
Amplifier 391
8.2.2 A Bipolar Implementation: The Common-Emitter
Amplifier 398
8.2.3 A MOS Implementation: The Common-Source
Amplifier 409
8.3 Voltage Buffers 416
8.3.1 A Generic Implementation: The Merge Follower 418
8.3.2 A Bipolar Implementation: The Emitter Follower 419
8.3.3 A FET Implementation: The Source Follower 424
8.4 Current Buffers 429
8.4.1 A Generic Implementation: The Control-Control
Amplifier 429
8.4.2 A Bipolar Implementation: The Common-Base
Amplifier 430
8.4.3 A FET Implementation: The Common-Gate Amplifier
432
8.5 Integrated Amplifiers 434
8.5.1 The Body Effect in FET Amplifiers 435
8.5.2 Current Mirrors 438
8.6 Differential Amplifiers 466
8.6.1 The Generic Differential Pair 446
8.6.2 A Bipolar Implementation: The Emitter-Coupled Pair
459
8.6.3 A FET Implementation: The Source-Coupled Pair 464
8.7 Multistage Amplifiers 468
8.7.1 Multistage Bipolar Amplifiers 469
8.7.2 Multistage FET Amplifiers 472
8.7.3 Multistage Amplifiers with Bipolar and Field-Effect
Transistors 474
8.7.4 Multistage Amplifiers with Differential Pairs:
Operational Amplifiers 474
8.8 Comparison of BJT and FET Amplifiers 478
Solutions to Exercises 479
Chapter Summary 484
References 485
Problems 486
Chapter 9 Amplifier Frequency Response 513
9.1 High-Frequency Small-Signal Models for Design 514
9.1.1 Independent Sources 514
9.1.2 Linear Passive Elements (Rs, Ls, & Cs) 514
9.1.3 Diodes 519
9.1.4 The Generic Transistor 520
9.1.5 Bipolar Junction Transistors 520
9.1.6 MOS Field-Effect Transistors 524
9.1.7 Junction Field-Effect Transistors 527
9.2 Stages with Voltage and Current Gain 528
9.2.1 A Generic Implementation: The Common-Merge
Amplifier 530
9.2.2 A Bipolar Implementation: The Common-Emitter
Amplifier 546
9.2.3 A FET Implementation: The Common-Source Amplifier
556
9.2.4 Comparison of Bipolar and FET Implementations 563
9.3 Voltage Buffers 564
9.3.1 A Generic Implementation:The Merge Follower 564
9.3.2 A Bipolar Implementation:The Emitter Follower 570
9.3.3 A FET Implementation:The Source Follower 575
9.4 Current Buffers 578
9.4.1 A Generic Implementation: The Common-Control
Amplifier 578
9.4.2 A Bipolar Implementation: The Common-Base
Amplifier 579
9.4.3 A FET Implementation:The Common-Gate Amplifier
581
9.5 Comparison of Single-Stage Amplifiers 582
9.5.1 Bipolar Amplifiers 583
9.5.2 FET Amplifiers 585
9.6 Multistage Amplifiers 587
9.6.1 The Common-Merge Merge-Follower Cascade 589
9.6.2 A Bipolar Implementation:The Common-Emitter
Emitter-Follower Cascade 593
9.6.3 A FET Implementation: The Common-Source Source-
Follower Cascade 596
9.6.4 The Cascode Amplifier: A Common-Merge Common-
Control Cascade 600
9.6.5 The Bipolar Cascode Amplifier: A Common-Emitter
Common-Base Cascade 603
9.6.6 The MOSFET Cascode Amplifier: A Common-Source
Common-Gate Cascade 606
9.7 Differential Amplifiers 608
9.7.1 The Generic Differential Pair 608
9.7.2 A Bipolar Implementation: The Emitter-Coupled Pair
616
9.7.3 A FET Implementation:The Source-Coupled Pair 621
Solutions to Exercises 625
Chapter Summary 634
References 634
Problems 634
Chapter 10 Feedback 659
10.1 Negative Feedback 660
10.1.1 Ideal Block Diagram Analysis 660
10.1.2 Ideal Analysis and the Characteristics of Negative
Feedback 662
10.1.3 First-Order Practical Analysis 674
10.1.4 Advanced Analysis 717
10.1.5 Stability of Systems with Feedback 726
10.1.6 Compensation 736
10.2 Positive Feedback and Oscillators 743
10.2.1 Sinnsoidal Oscillators 744
10.2.2 Nonsinusoidal Oscillators 754
Solutions to Exercises 759
Chapter Summary 770
References 771
Problems 772
Chapter 11 Filters and Tuned Amplifiers 801
11.1 Filters 802
11.1.1 Ideal Transfer Functions 802
11.1.2 Practical Transfer Functions 802
11.1.3 Normalization (Frequency and Component Value
Scaling) 813
11.1.4 The Narrowband Approximation 814
11.1.5 Integrated Filters and Simulated Inductors 818
11.1.6 Discrete-time Filters 821
11.2 Tuned Amplifiers 830
11.2.1 Single-Ttmed Amplifiers 831
11.2.2 Synchronous and Stagger-Tuned Amplifiers 838
11.3 Phase-Locked Loops 844
11.3.1 First-Order PLLs 848
11.3.2 Second-Order PLLs 849
11.3.3 Type-II PLLs 850
Solutions to Exercises 851
Chapter Summary 852
References 853
Problems 854
Chapter 12 Low-Frequency Large-Signal AC Analysis 863
12.1 Diode Circuits 864
12.1.1 Diode Rectifiers 864
12.1.2 Limiting, Clamping, and Multiplying Circuits 871
12.1.3 Diode Switching 874
12.2 Amplifiers 875
12.2.1 Signal Swing in Bipolar Amplifiers 877
12.2.2 Signal Swing in FET Amplifiers 888
12.2.3 Distortion in Amplifiers 897
12.3 Output Stages 908
12.3.1 Class A Output Stages: Classification and Efficiency
of Output Stages 908
12.3.2 Class B and AB Output Stages 912
12.3.3 More Advanced Output Stages 917
12.3.4 Power Transistors, Thermal Modeling, and Heat Sinks
919
Solutions to Exercises 923
Chapter Summary 925
References 926
Problems 927
Chapter 13 Data Converters 939
13.1 Overview 939
13.1.1 Analog and Digital Signal Processing and Applications
of Data Converters 940
13.1.2 Data Converter Transfer Functions and Specifications
946
13.2 Digital-to-Analog Converters 948
13.2.1 Resistive DACs 948
13.2.2 Capacitive DACs 953
13.3 Analog-to-Digital Converters 954
13.3.1 Sample-and-Hold Circuit 954
13.3.2 The Successive Approximation ADC 955
13.3.3 The Dual-Slope ADC 956
13.3.4 The Flash ADC 957
13.3.5 Other ADC Architectures 958
Solutions to Exercises 959
Chapter Snmmary 960
References 960
Problems 960
Part 3 Digital Electronic Circuit Design
Chapter 14 Gate-Level Digital Circuits 96.5
14.1 Background and Binary Logic 966
14.1.1 Fundamental Charaeteristics of Digital Circuits 966
14.1.2 Number Systems 967
14.1.3 Binary Logic Gates 969
14.2 Flip-Flops 972
14.2.1 The Set-Reset Flip-Flop 973
14.2.2 The JK Flip-Flop 974
14.2.3 The D Flip Flop 977
14.3 Shift Registers and Counters 978
14.4 Reflections on Transmission Lines 980
Solutions to Exercises 984
Chapter Summary 986
References 986
Problems 986
Chapter 15 Transistor-Level Digital Circuits 991
15.1 Device Modeling for Digital Design 992
15.1.1 Diodes 992
15.1.2 Bipolar Junction Transistors 998
15.1.3 MOS Field-Effect Transistors 1007
15.2 Specification of Logic Gates 1008
15.2.1 Static Specifications 1008
15.2.2 Dynamic Specifications 1011
15.3 MOS Digital Circuits 1014
15.3.1 NMOS 1015
15.3.2 CMOS Inverter (NOT gate) 1018
15.3.3 CMOS NOR and NAND Gates 1026
15.3.4 More Complex CMOS Gates 1030
15.3.5 Other Types of CMOS Logic 1031
15.3.6 MOS Memory 1034
15.4 Bipolar Digital Circuits 1043
15.4.1 Transistor-Transistor Logic (TTL) 1043
15.4.2 Emitter-Coupled Logic 1051
Solutions to Exercises 1065
Chapter Summary 1069
References 1070
Problems 1071
Appendixes
Appendix A Spice Reference 1083
A.1 Running SPICE 1083
A.2 The Input File 1084
References 1100
Appendix B Example Device Models 1101
B.1 Device Data 1101
B.2 Model Libraries from the CD 1102
References 1105
Appendix C Two-Port Network Properties (on the CD)
Appendix D Review of Linear Time-Invariant Network Analysis (on the CD)
Answer to Selected Problems 1107
INDEX 1117
Chapter I Electronic Circuit Design 1
1.1 The Process of Design 2
1.2 Analysis for Design 3
1.2.1 Frequency-Independent Analysis for Design 3
1.2.2 Frequency-Dependent Analysis for Design 12
1.3 Electronic Systems 19
1.3.1 Electronic versus Electric Circuits 19
1.3.2 Analog and Digital Electronic Circuits 21
1.3.3 Modeling Electronic Systems 25
1.3.4 Discrete, Integrated, and Hybrid Circuits 30
1.4 Notation 31
Solutions to Exercises 32
Chapter Summary 34
References 35
Problems 35
Chapter 2 Semiconductor Physics and Electronic Devices 43
2. 1 Material Properties 44
2.1.1 Crystal Structure 44
2.1.2 Conductors, Insulators, and Semiconductors 45
2.1.3 Generation and Recombination 47
2.2 Conduction Mechanisms 48
2.2.1 Diffusion 48
2.2.2 Drift 49
2.3 Conductor-to-Semiconductor Contacts 52
2.3.1 Rectifying Contacts 55
2.3.2 Ohmic Contacts 59
2.4 pn-junetion Diodes 61
2.4.1 Intuitive Treatment 62
2.4.2 Detailed Analysis of Current Flow 66
2.4.3 Minority-Carrier Profiles 73
2.4.4 Summary of Current Flow 75
2.4.5 Charge Storage and Varactor Diodes 77
2.4.6 Breakdown and Zener Diodes 80
2.4.7 Other Types of Diodes 84
2.5 Bipolar Junction Transistors (BJTs) 85
2.5.1 Intuitive Treatment 87
2.5.2 Detailed Analysis of Current Flow 87
2.5.3 Base Current 92
2.5.4 Base-Width Modulation (The Early Effect) 98
2.5.5 Charge Storage 116
2.5.6 Breakdown Voltages 96
2.5.7 Other Types of Junction Transistors 98
2.6 Metal-Oxide Semiconductor Field-Effect Transistors
(MOSFETs) 98
2.6.1 Intuitive Treatment 99
2.6.2 Detailed Analysis of Current Flow 103
2.6.3 Channel-Length Modulation 115
2.6.4 Charge Storage 116
2.6.5 The Effect of Bulk Bias 118
2.6.6 Breakdown 119
2.6.7 Short- and Narrow-Channel Effects 120
2.7 Junction Field-Effect Transistors (JFETs) 122
2.7.1 Intuitive Treatment 122
2.7.2 Detailed Analysis of Current Flow 124
2.7.3 Second-Order Effects 127
2.8 Metal-Semiconductor FETs (MOSFETs) 129
2.9 Silicon Controlled Rectifier and Power Handling Devices 130
2.10 Comparison of Devices 133
Solutions to Exercises 134
Chapter Summary 136
References 137
Problems 137
Chapter 3 Solid-State Device Fabrication 145
3.1 CMOS Technology 146
3.1.1 The Beginning: Choosing a Substrate 146
3.1.2 Active Region Formation 147
3.1.3 N and P Well Formation 150
3.1.4 Gate Formation 152
3.1.5 Tip or Extension (LDD) Formation 156
3.1.6 Source/Drain Formation 158
3.1.7 Contact and Local Interconnect Formation 160
3.1.8 Multilevel Metal Formation 162
3.1.9 Electrical Model Related to Physical Structure 166
3.2 Bipolar Teclmology 167
3.2.1 Device Fabrication 167
3.2.2 Electrical Model Related to Physical Structure 168
Chapter Summary 168
References 169
Problems 169
Chapter 4 Computer-Aided Design: Tools and Teehniques 171
4.1 Overview of Simulation Techniques 172
4.1.1 Analog Systems 172
4.1.2 Digital Systems 173
4.1.3 Mixed Analog and Digital Systems 174
4.2 Circuit Simulation Using SPICE 175
4.21 SPICE Input and Output 175
4.2.2 Simulation Modes andTypes of Analysis 177
4.3 Circuit Elements and Models for SPICE 183
4.3.1 Sources 183
4.3.2 Passive Devices 184
4.3.3 Diodes 184
4.3.4 Bipolar Junction Transistors 186
4.3.5 MOS Field-Effect Transistors 193
4.3.6 Junction Field-effect Transistors and MOSFETs 198
4.4 Macro Models in SPICE 198
Solutions to Exercises 200
Chapter Summary 204
References 204
Problems 205
Part 2 Analog Electronic Circuit Design
Chapter 5 Operational Amplifiers 211
5.1 Basic Op Amp Circuits 212
5.1.1 The Noninverting Amplifier 212
5.1.2 The Inverting Amplifier 215
5.1.3 The Unity-Gain Amplifier, or Voltage Follower 217
5.1.4 The Differential Amplifier 217
5.1.5 The Instrumentation Amplifier 225
5.1.6 Current Sources 226
5.1.7 Voltage Regulators 227
5.2 Frequency-Dependent Op Amp Circuits 228
5.2.1 The Integrator and First-Order Low-Pass Filter 228
5.2.2 The Differentiator and First-Order High-Pass Filter 231
5.2.3 Second-Order Filters 232
5.3 Nonlinear Op Amp Circuits 235
5.3.1 Comparators 235
5.3.2 Precision Rectification and Clipping 237
5.3.3 Logarithmic Amplifiers 238
5.4 Nonideal Characteristics of Op Amps 239
5.4.1 Finite Gain 240
5.4.2 Input Bias and Offset Currents 241
5.4.3Input Offset Voltage 243
5.4.4 Finite Input and Output Impedances 244
5.4.5 Finite Bandwidth 246
5.4.6 Common-Mode Rejection Ratio and Power-Supply
Rejection Ratio 249
5.4.7 Output Swing Revisited 253
5. 4. 8 Slew Rate and FuU-Power Bandwidth 253
5. 4. 9 Noise 255
5. 4. 10 Op Amp Parameter Measurement 255
Solutions to Exercises 257
Chapter Summary 258
References 259
Problems 259
Chapter 6 Small-Signal Linearity and Amplification 271
6. 1 Linear Time-Invariant Networks 272
6. 1 Nonlinear Circuit Analysis 273
6. 2. 1 Analytical Solution 273
6. 2. 2 Graphical Solution 274
6. 2. 3 Solving with Models 274
6. 3 Small-Signal Analysis 276
6. 3. 1 An Alternate View of the Small-Signal
Approximation 281
6. 3. 2 Accuracy of the Small-Signal Approximation 282
6. 4 Small-Signal Amplifiers 282
6. 4. 1 Small-signal Models for Transistors 282
6. 4. 2 Example Application 286
6. 5 Types of Amplifiers 288
6. 5. 4 Two-Port Models for Amplifiers 288
6. 5. 2 AC-and DC-coupled Transfer Functions 292
Solutions to Exercises 294
Chapter Summary 296
References 296
Problems 296
Chapter 7 DC Biasing 301
7. 1 DC and Large-Signal Low-Frequency Models for Design 302
7. 1. 1 Independent Sources 302
7.1.2 Linear Passive Devices (Rs, Ls, & Cs) 303
7.1.3 Diodes 304
7.1.4 Bipolar Junction Transistors 309
7.1.5 MOS Field-Effect Transistors 315
7.1.6 Junction Field-Effect Transistors 323
7.1.7 Comparison-of Bipolar and Field-Effect Transistor
Biasing 324
7.2 Biasing of Single-Stage Amplifiers 325
7.2.1 BJT Amplifiers 325
7.2.2 FET Amplifiers 332
7.3 Biasing of Multistage Amplifiers 341
7.3.1 Cascaded Bipolar Amplifiers 341
7.3.2 Cascaded FET Amplifiers 342
7.4 Biasing for Integrated Circuits 342
7.4.1 Simple Bipolar Current Mirrors 345
7.4.2 More Advanced Bipolar Current Mirrors 346
7.4.3 FET Current Mirrors 348
7.5 Biasing of Differential Amplifiers 350
7.6 Worst-Case Analysis and Parameter Variation 353
Solutions to Exercises 356
Chapter Summary 358
References 359
Problems 359
Chapter 8 Low-Frequency Small-Signal AC Analyis and Amplifiers 371
8.1 Low-Frequency Small-Signal Models for Design 372
8.1.1 Independent Sources 372
8.1.2 Linear Passive Devices (Rs, Ls, & Cs) 373
8.1.3 Diodes 376
8.1.4 The Generic Transistor 377
8.1.5 Bipolar Junction Transistors 379
8.1.6 MOS Field-Effect Transistors 386
8.1.7 Junction Field-Effect Transistors 389
8.1.8 Comparison of Bipolar and Field-Effect Transistors 390
8.2 Stages with Voltage and Current Gain 391
8.2.1 A Generic Implementation: The Common-Merge
Amplifier 391
8.2.2 A Bipolar Implementation: The Common-Emitter
Amplifier 398
8.2.3 A MOS Implementation: The Common-Source
Amplifier 409
8.3 Voltage Buffers 416
8.3.1 A Generic Implementation: The Merge Follower 418
8.3.2 A Bipolar Implementation: The Emitter Follower 419
8.3.3 A FET Implementation: The Source Follower 424
8.4 Current Buffers 429
8.4.1 A Generic Implementation: The Control-Control
Amplifier 429
8.4.2 A Bipolar Implementation: The Common-Base
Amplifier 430
8.4.3 A FET Implementation: The Common-Gate Amplifier
432
8.5 Integrated Amplifiers 434
8.5.1 The Body Effect in FET Amplifiers 435
8.5.2 Current Mirrors 438
8.6 Differential Amplifiers 466
8.6.1 The Generic Differential Pair 446
8.6.2 A Bipolar Implementation: The Emitter-Coupled Pair
459
8.6.3 A FET Implementation: The Source-Coupled Pair 464
8.7 Multistage Amplifiers 468
8.7.1 Multistage Bipolar Amplifiers 469
8.7.2 Multistage FET Amplifiers 472
8.7.3 Multistage Amplifiers with Bipolar and Field-Effect
Transistors 474
8.7.4 Multistage Amplifiers with Differential Pairs:
Operational Amplifiers 474
8.8 Comparison of BJT and FET Amplifiers 478
Solutions to Exercises 479
Chapter Summary 484
References 485
Problems 486
Chapter 9 Amplifier Frequency Response 513
9.1 High-Frequency Small-Signal Models for Design 514
9.1.1 Independent Sources 514
9.1.2 Linear Passive Elements (Rs, Ls, & Cs) 514
9.1.3 Diodes 519
9.1.4 The Generic Transistor 520
9.1.5 Bipolar Junction Transistors 520
9.1.6 MOS Field-Effect Transistors 524
9.1.7 Junction Field-Effect Transistors 527
9.2 Stages with Voltage and Current Gain 528
9.2.1 A Generic Implementation: The Common-Merge
Amplifier 530
9.2.2 A Bipolar Implementation: The Common-Emitter
Amplifier 546
9.2.3 A FET Implementation: The Common-Source Amplifier
556
9.2.4 Comparison of Bipolar and FET Implementations 563
9.3 Voltage Buffers 564
9.3.1 A Generic Implementation:The Merge Follower 564
9.3.2 A Bipolar Implementation:The Emitter Follower 570
9.3.3 A FET Implementation:The Source Follower 575
9.4 Current Buffers 578
9.4.1 A Generic Implementation: The Common-Control
Amplifier 578
9.4.2 A Bipolar Implementation: The Common-Base
Amplifier 579
9.4.3 A FET Implementation:The Common-Gate Amplifier
581
9.5 Comparison of Single-Stage Amplifiers 582
9.5.1 Bipolar Amplifiers 583
9.5.2 FET Amplifiers 585
9.6 Multistage Amplifiers 587
9.6.1 The Common-Merge Merge-Follower Cascade 589
9.6.2 A Bipolar Implementation:The Common-Emitter
Emitter-Follower Cascade 593
9.6.3 A FET Implementation: The Common-Source Source-
Follower Cascade 596
9.6.4 The Cascode Amplifier: A Common-Merge Common-
Control Cascade 600
9.6.5 The Bipolar Cascode Amplifier: A Common-Emitter
Common-Base Cascade 603
9.6.6 The MOSFET Cascode Amplifier: A Common-Source
Common-Gate Cascade 606
9.7 Differential Amplifiers 608
9.7.1 The Generic Differential Pair 608
9.7.2 A Bipolar Implementation: The Emitter-Coupled Pair
616
9.7.3 A FET Implementation:The Source-Coupled Pair 621
Solutions to Exercises 625
Chapter Summary 634
References 634
Problems 634
Chapter 10 Feedback 659
10.1 Negative Feedback 660
10.1.1 Ideal Block Diagram Analysis 660
10.1.2 Ideal Analysis and the Characteristics of Negative
Feedback 662
10.1.3 First-Order Practical Analysis 674
10.1.4 Advanced Analysis 717
10.1.5 Stability of Systems with Feedback 726
10.1.6 Compensation 736
10.2 Positive Feedback and Oscillators 743
10.2.1 Sinnsoidal Oscillators 744
10.2.2 Nonsinusoidal Oscillators 754
Solutions to Exercises 759
Chapter Summary 770
References 771
Problems 772
Chapter 11 Filters and Tuned Amplifiers 801
11.1 Filters 802
11.1.1 Ideal Transfer Functions 802
11.1.2 Practical Transfer Functions 802
11.1.3 Normalization (Frequency and Component Value
Scaling) 813
11.1.4 The Narrowband Approximation 814
11.1.5 Integrated Filters and Simulated Inductors 818
11.1.6 Discrete-time Filters 821
11.2 Tuned Amplifiers 830
11.2.1 Single-Ttmed Amplifiers 831
11.2.2 Synchronous and Stagger-Tuned Amplifiers 838
11.3 Phase-Locked Loops 844
11.3.1 First-Order PLLs 848
11.3.2 Second-Order PLLs 849
11.3.3 Type-II PLLs 850
Solutions to Exercises 851
Chapter Summary 852
References 853
Problems 854
Chapter 12 Low-Frequency Large-Signal AC Analysis 863
12.1 Diode Circuits 864
12.1.1 Diode Rectifiers 864
12.1.2 Limiting, Clamping, and Multiplying Circuits 871
12.1.3 Diode Switching 874
12.2 Amplifiers 875
12.2.1 Signal Swing in Bipolar Amplifiers 877
12.2.2 Signal Swing in FET Amplifiers 888
12.2.3 Distortion in Amplifiers 897
12.3 Output Stages 908
12.3.1 Class A Output Stages: Classification and Efficiency
of Output Stages 908
12.3.2 Class B and AB Output Stages 912
12.3.3 More Advanced Output Stages 917
12.3.4 Power Transistors, Thermal Modeling, and Heat Sinks
919
Solutions to Exercises 923
Chapter Summary 925
References 926
Problems 927
Chapter 13 Data Converters 939
13.1 Overview 939
13.1.1 Analog and Digital Signal Processing and Applications
of Data Converters 940
13.1.2 Data Converter Transfer Functions and Specifications
946
13.2 Digital-to-Analog Converters 948
13.2.1 Resistive DACs 948
13.2.2 Capacitive DACs 953
13.3 Analog-to-Digital Converters 954
13.3.1 Sample-and-Hold Circuit 954
13.3.2 The Successive Approximation ADC 955
13.3.3 The Dual-Slope ADC 956
13.3.4 The Flash ADC 957
13.3.5 Other ADC Architectures 958
Solutions to Exercises 959
Chapter Snmmary 960
References 960
Problems 960
Part 3 Digital Electronic Circuit Design
Chapter 14 Gate-Level Digital Circuits 96.5
14.1 Background and Binary Logic 966
14.1.1 Fundamental Charaeteristics of Digital Circuits 966
14.1.2 Number Systems 967
14.1.3 Binary Logic Gates 969
14.2 Flip-Flops 972
14.2.1 The Set-Reset Flip-Flop 973
14.2.2 The JK Flip-Flop 974
14.2.3 The D Flip Flop 977
14.3 Shift Registers and Counters 978
14.4 Reflections on Transmission Lines 980
Solutions to Exercises 984
Chapter Summary 986
References 986
Problems 986
Chapter 15 Transistor-Level Digital Circuits 991
15.1 Device Modeling for Digital Design 992
15.1.1 Diodes 992
15.1.2 Bipolar Junction Transistors 998
15.1.3 MOS Field-Effect Transistors 1007
15.2 Specification of Logic Gates 1008
15.2.1 Static Specifications 1008
15.2.2 Dynamic Specifications 1011
15.3 MOS Digital Circuits 1014
15.3.1 NMOS 1015
15.3.2 CMOS Inverter (NOT gate) 1018
15.3.3 CMOS NOR and NAND Gates 1026
15.3.4 More Complex CMOS Gates 1030
15.3.5 Other Types of CMOS Logic 1031
15.3.6 MOS Memory 1034
15.4 Bipolar Digital Circuits 1043
15.4.1 Transistor-Transistor Logic (TTL) 1043
15.4.2 Emitter-Coupled Logic 1051
Solutions to Exercises 1065
Chapter Summary 1069
References 1070
Problems 1071
Appendixes
Appendix A Spice Reference 1083
A.1 Running SPICE 1083
A.2 The Input File 1084
References 1100
Appendix B Example Device Models 1101
B.1 Device Data 1101
B.2 Model Libraries from the CD 1102
References 1105
Appendix C Two-Port Network Properties (on the CD)
Appendix D Review of Linear Time-Invariant Network Analysis (on the CD)
Answer to Selected Problems 1107
INDEX 1117
猜您喜欢