书籍详情
数字通信:英文版
作者:(英)格洛弗(Lan A.Glover),(英)格兰特(Peter M.Grant)著
出版社:机械工业出版社
出版时间:2004-02-01
ISBN:9787111136866
定价:¥96.00
购买这本书可以去
内容简介
本书旨在介绍信号处理中的数学理论,并用这些理论来描述现代数字通信技术。本书第1版问世以来,因涵盖范围广,并注重理论、应用与系统实施之间的平衡而深受读者欢迎。第2版除了继续保持原版的所有优点以外,还拥有更好的时效性,在各方在都更加趋于完善。LanA.Glover巴斯大学电子电气工程学部高级讲师,为本科生与研究生讲授数字通信课程。他同时还担任工程师协会第二分部“电信系统工程”考试的联合首席主考官。PeterM.Grant爱丁堡大学工程与电子学院院长。本书内容广泛,包括信息理论、PCM、源编码、加密、通道编码、复用、调幅以及最优化滤波等。对系统噪声和通信链路预算进行了全面的论述。介绍了系统模拟的原理。涉及现代通信系统,包括卫星通信、蜂窝式无线通信等。扩充了网络通信内容,包括SDH、循环分组交换、SS7、ATM与B-LSDN、xDSL、FTTx、电缆、BFWA、HAP、有线与无线LAN和PAN。包含大量的实例,并在每章后附有思考题。更新过的参考资料、网址、标准以及文献书目。可在网上获取问题的概要解决方案。
作者简介
LanA.Glover巴斯大学电子电气工程学部高级讲师,为本科生与研究生讲授数字通信课程。他同时还担任工程师协会第二分部“电信系统工程”考试的联合首席主考官。PeterM.Grant爱丁堡大学工程与电子学院院长。
目录
Preface
Acknowledgements
List of abbreviations
List of principal symbols
1 Digital communications overview
1.1 Electronic communications
1.2 Sources and sinks of information
1.3 Digital communications equipment
1.3.1 CODECs
1.3.2 Source,security and error control coding
1.3.3 Multiplexers
1.3.4 MODEMs
1.3.5 Multiple accessing
1.4 Radio receivers
1.5 Signal transmission
1.5.1 Line transmission
1.5.2 Radio transmission
1.6 Switching and networks
1.7 Advantages of digital communications
1.8 Summary
Part One Signals and systems theory
2 Periodic and transient signals
2.1 Introduction
2.2 Periodic signals
2.2.1 Sinusoids,cisoids and phasors
2.2.2 Fourier series
2.2.3 Conditions for existence,convergence and Gibb's phenomenon
2.2.4 Bandwidth,rates of change,sampling and aliasing
2.3 Transient signals
2.3.1 Fourier transforms
2.3.2 Practical calculation of Fourier transforms
2.3.3 Fourier transform pairs
2.3.4 Fourier transform theorems and convolution
2.4 Power and enegy sectra
2.5 Generalised orthogonal function expansions
2.5.1 Review of vectors
2.5.2 Vector interpretation of waveforms
2.5.3 Orthogonal and orthonormal signals
2.5.4 Evaluation of basis function coefficients
2.5.5 Error energy and completeness
2.6 Correlation functions
2.7 Summary
2.8 Problems
3 Random Signals and noise
3.1 Introduction
3.2 Probability theory
3.2.1 Conditional probabilities,joint Probabilities and Bayes's rule
3.2.2 Statistical independence
3.2.3 Discrete probability of errors in a data block
3.2.4 Cumulative distributions and probability density functions
3.2.5 Moments,percentiles and modes
3.2.6 Joint and marginal pdfs,correlation and covariance
3.2.7 Joint moments,correlation and covariance
3.2.8 Joint Gaussian raussian random variables
3.2.9 Addition of random variables and the central limit theorem
3.3 Random processes
3.3.1 Stationarity and ergodicity
3.3.2 Strict and loose sense Gaussian processes
3.3.3 Autocorrelation and power spectral density
3.3.4 Signal memory,decorrelation time and white noise
3.3.5 Cross correlation of random processes
3.4 Summary
3.5 Problems
4 Linear systems
4.1 Introduction
4.2 Linear systems
4.2.1 Properties of linear systems
4.2.2 Importance of linear systems
4.3 Time domain description of linear systems
4.3.1 Linear differential equations
4.3.2 Discrete signals and matrix algebra
4.3.3 Continuous signals,convolution and impulse response
4.3.4 Physical interpretation of y(t)=h(t)*x(t)
4.3.5 Step response
4.4 Frequency domain description
4.5 Causality and the Hibert transform
4.6 Random signals and linear systems
4.6.1 Power spectral densities and linear systems
4.6.2 Noise bandwidth
4.6.3 Pdf of filtered noise
4.6.4 Spectrum analysers
4.7 Non-linear systems and transformation of random variables
4.7.1 Rayleigh pdf
4.7.2 Chi-square distributions
4.8 Summary
4.9 Problems
Part Two Digital communications principles
5 Sampling,multiplexing and PCM
5.1 Introduction
5.2 Pulse modulation
5.3 Sampling
5.3.1 Natural and flat topped sampling
5.3.2 Baseband sampling and Nyquist's criterion
5.3.3 Aliasing
5.3.4 Practical sampling,reconstruction and signal to distortion ratio
5.3.5 Bandpass sampling
5.4 Analogue pulse multiplexing
5.5 quantised PAM
5.6 Signal to quantisation noise ration(SNqR)
5.7 Pulse code modulation
5.7.1 SNqR for linear PCM
5.7.2 SNR for decoded PCM
5.7.3 Companded PCM
5.7.4 PCM multiplexing
5.8 Bandwidth reduction techniques
5.8.1 Delta PCM
5.8.2 Differential PCM
5.8.3 Adaptive DPCM
5.8.4 Delta modulation
5.8.5 Adaptive delta modulation
5.9 Summary
5.10 Problems
6 Baseband transmission and line coding
6.1 Introduction
6.2 Baseband centre point detection
6.2.1 Baseband binary error rates in Gaussian noise
6.2.2 Multilevel baseband signalling
6.3 Error accumulation over multiple hops
6.4 Line coding
6.4.1 Unipolar signalling
6.4.2 Polar signalling
6.4.3 Dipolar signalling
6.4.4 Bipolar alternate mark inversion signalling
6.4.5 Pulse synchronisation and HDBn coding
6.4.6 Coded mark inversion(CMI)
6.4.7 nBmT coding
6.5 Multiplex telephony
6.6 Digital signal regeneration
6.6.1 PCM line
6.6.2 Equalisation
6.6.3 Eye diagrams
6.6.4 Crosstalk
6.7 Symbol Timing recovery
6.8 Repeater design
6.9 Digital transmission in local loop
6.10 Summary
6.11 Problems
7 Decision theory
7.1 Introduction
7.2 A priori,conditional and a posteriori probabilities
7.3 Symbol transition matrix
7.3.1 Binary symmetric channel
7.4 Bayes's decision criterion
7.4.1 Decision costs
7.4.2 Expected conditional decision costs
7.4.3 Optimum decision rule
7.4.4 Optimum decision threshold voltage
7.4.5 Average unconditional decision cost
7.5 Neyman-Pearson decision criterion
7.6 Summary
7.7 Problems
8 Optimum filtering for transmission and reception
8.1 Introduction
8.2 Pulse shaping for optimum transmissions
8.2.1 Intersymbol interference(ISI)
8.2.2 Bandlimiting of rectangular pulses
8.2.3 ISI-free signals
8.2.4 Nyquist's vestigal symmetry theorem
8.2.5 Raised cosine filtering
8.2.6 Nyquist filtering for rectangular pulses
8.2.7 Duobinary signalling
8.2.8 Partial response signalling
8.3 Pulse filtering for optimum reception
8.3.1 Matched filtering
8.3.2 Correlation detection
8.3.3 Decision instant SNR
8.3.4 BER performance of optimum receivers
8.3.5 Comparison of baseband matched filtering and centre point detection
8.3.6 Differences between matched filtering and correlation
8.4 Root raised cosine filtering
8.5 Equalisation
8.6 Summary
8.7 Problems
9 Information theory,source coding and encryption
9.1 Introduction
9.2 Information and entropy
9.2.1 The information measure
9.2.2 Multisymbol alphabets
9.2.3 Commonly confused entities
9.2.4 Entropy of a binary source
9.3 Conditional entropy and redundancy
9.4 Information loss due to noise
9.5 Source coding
9.5.1 code efficiency
9.5.2 Decoding variable length codewords
9.6 Variable length coding
9.6.1 Huffman coding
9.7 Source coding examples
9.7.1 Source coding for speech signals
9.7.2 High quality speech coders
9.7.3 Audio coders
9.7.4 String coding
9.8 Data encryption
9.8.1 The locked box analogy
9.8.2 Secrecy
9.8.3 Substitution and permutation
9.8.4 Confusion,diffusion and the unicity distance
9.8.5 Block ciphers and stream ciphers
9.8.6 Product ciphers
9.8.7 Data encryption standard
9.8.8 Public key encryption
9.8.9 Hash functions and OEAP
9.8.10 Hybrid public key/private key encryption and PGP
9.9 Authentication
9.10 Integrity
9.11 Digital Signatures
9.12 Summary
9.13 Problems
10 Error control coding
10.1 Introduction
10.1.1 Error rate control concepts
10.1.2 Threshold phenomenon
10.1.3 Applications for error control
10.2 Hamming distance and codeword wight
10.3 (n,k)block codes
10.3.1 Single parity check code
10.4 Probability of error in n-digit codewords
10.5 Linear group codes
10.5.1 Members of the group code family
10.5.2 Performance prediction
10.5.3 Error detection and correction capability
10.6 Nearest neighbour decoding of block codes
10.6.1 Hamming bound
10.7 Syndrome decoding
10.7.1 The generator matrix
10.7.2 Syndrome table for error correction
10.8 Cyclic codes
10.8.1 Polynomial codeword generation
10.8.2 Interleaving
10.9 Encoding of convolutional codes
10.9.1 Tree diagram representation
10.9.2 Trellis diagram
10.9.3 State transittion diagram
10.10 Viterbi decoding of convoltional codes
10.10.1 Decoding window
10.10.2 Sequential decoding
10.11 Practical coders
10.12 Concatenated coding and turbo codes
10.12.1 Serially concatenated codes
10.12.2 Parallel-concatenated recursive systematic convolutional codes
10.12.3 Turbo decoding
10.12.4 Turbo code performance
10.12.5 Other applications of the turbo principle
10.13 Summary
10.14 Problems
11 Bandpass modulation of a carrier signal
11.1 Introduction
11.2 Spectral and ower efficiency
11.3 binary IF modulation
11.3.1 Binary amplitude shift keying(and on-off keying)
11.3.2 Binary phase shift keying(and phase reversal keying)
11.3.3 Binary frequency shift keying
11.3.4 BFSK symbol correlation and Sunde's FSK
11.3.5 Comparison of binary shift keying techniques
11.3.6 Carrier recovery,phase ambiguity and DPSK
11.4 Modulation techniques with increased spectral efficiency
11.4.1 Channel capacity
11.4.2 M-symbol phase shift keying
11.4.3 Amplitude/phase keying and quadrature amplitude modulation
11.4.4 quadrature phase shift keying(QPSK)and offset QPSK
11.4.5 Minimum shift keying
11.4.6 Gaussian MSK
11.4.7 Trellis coded modulation
11.5 Power efficient modulation techniques
11.5.1 Multidimensional signalling and MFSK
11.5.2 Orthogonal frequency division multiplex(OFDM)
11.5.3 Optimum constellation point packing
11.5.4 Optimum constellation point boundaries
11.6 Data modems
11.7 Summary
11.8 Problems
12 System noise and communications link budgets
12.1 Introduction
12.2 Physical aspects of noise
12.2.1 Thermal noise
12.2.2 Non-thermal noise
12.2.3 Combining white noise sources
12.3 System noise calculations
12.3.1 Noise temperature
12.3.2 Noise temperature of cascaded subsystems
12.3.3 Noise factor and noise figure
12.4 Radio communication link budgets
12.4.1 Antenna gain,effective area and efficiency
12.4.2 Free space and plane earth signal budgets
12.4.3 Antenna temperature and radio noise budgets
12.4.4 Receiver equivalent input CNR
12.4.5 Multipath fading and diversity reception
12.5 Fibre optic transmission links
12.5.1 Fibre types
12.5.2 Fibre transmission systems
12.5.3 Optical sources
12.5.4 Optical detectors
12.5.5 Optical amplifiers
12.5.6 Optical repeater and link budgets
12.5.7 Optical FDM
12.5.8 Optical signal routers
12.6 Summary
12.7 Problems
13 Communication systems simulation
13.1 Introduction
13.2 Equivalent complex baseband representations
13.2.1 Equivalent baseband signals
13.2.2 Equivalent baseband systems
13.2.3 Equivalent baseband systems output
13.2.4 Equivalent baseband noise
13.3 Sampling and quantisation
13.3.1 Sampling equivalent baseband signals
13.3.2 Quantisation
13.4 Modeling of signals,noise and systems
13.4.1 Random numbers
13.4.2 Random digital symbol streams
13.4.3 Noise and interference
13.4.4 Time invariant linear systems
13.4.5 Non-linear and time varying systems
13.5 Transformation between time and frequency domains
13.5.1 DFT
13.5.2 DFS
13.5.3 DFS spectrum and rearrangement of spectral lines
13.5.4 Conservation of information
13.5.5 Phasor interpretation of DFS
13.5.6 Inverse DFS and DFT
13.5.7 DFT accuracy
13.6 Discrete and cyclical convolution
13.7 Estimation of BER
13.7.1 Monte Carlo simulation
13.7.2 Quasi-analytic simulation
13.8 Summary
Part Three Application
14 Fixed-point microwaver communications
14.1 Introduction
14.2 Terrestrial microwaver links
14.2.1 Analogue systems
14.2.2 Digital systems
14.2.3 LOS link design
14.2.4 Other propagation considerations terrestrial links
14.3 Fixed-point satellite communications
14.3.1 Satellite frequency bands and orbital spacing
14.3.2 Earth station look angles and satellite range
14.3.3 Satellite link budgets
14.3.4 Slant path propagation considerations
14.3.5 Analogue FDM/FM/FDMA trunk systems
14.3.6 digital TDM/PSK/TDMA trunk systems
14.3.7 DA-TDMA,DSI and random access systems
14.3.8 Economics of satellite communications
14.3.9 VSAT systems
14.3.10 Satellite switched TDMA and onboard signal processing
14.4 Summary
14.5 Problems
15 Mobile and cellular radio
15.1 Introduction
15.1.1 private mobile radio
15.1.2 Radio paging systems
15.2 Mobile radio link budget and channel characteristics
15.2.1 Prediction of median signal strength
15.2.2 slow and fast fading
15.2.3 Dispersion,frequency selective fading and coherence bandwidth
15.2.4 Multipath modeling and simulation
15.3 Nationwide cellular radio communications
15.3.1 Introduction
15.3.2 Personal cordless communication
15.3.3 Analogue cellular radio communication
15.3.4 Cell sizes
15.3.5 System configuration
15.4 Digital TDMA terrestrial cellular systems
15.4.1 TDMA systems
15.4.2 TDMA data format and modulation
15.4.3 Speech and channel coding
15.4.4 Other operational constraints
15.4.5 Trunked radio for paramilitary use
15.5 Code division multiple access(CDMA)
15.5.1 The CDMA concept
15.5.2 CDMA receiver design
15.5.3 Spreading sequence design
15.5.4 Data modulation
15.5.5 CDMA multipath processing
15.5.6 The cdmaOne system
15.5.7 Frequency hopped transmission
15.6 Mobile satellite based systems
15.7 Third generation mobile cellular standards
15.7.1 Mobile data transmission
15.7.2 3G developments
15.7.3 Wideband CDMA
15.8 Summary
15.9 Problems
16 Video transmission and storage
16.1 Introduction
16.2 Colour representation
16.3 Conventional TV transmission systems
16.3.1 PAL encoding
16.3.2 PAL television receiver
16.3.3 Other encoding schemes
16.4 High definition TV
16.4.1 What is HDTV?
16.4.2 Studio standards
16.4.3 Transmissions
16.5 Digital video
16.6 Video data compression
16.6.1 Run length coding
16.6.2 Conditional replenishment
16.6.3 Transform coding
16.7 Compression standards
16.7.1 COST 211
16.7.2 JPEG
16.7.3 MPEG-1 and MPEG-2
16.7.4 MPEG-4
16.7.5 MPEG-7
16.7.6 H.261 and H.263
16.7.7 Model based coding
16.8 Digital video broadcast
16.9 Packet video
16.10 Summary
16.11 Problems
Part Four Networks
17 Metwork applications,topologies and architecture
17.1 Introduction
17.2 Network applications
17.3 Network function
17.4 Network classification
17.5 Switched network topologies and representation
17.5.1 Star or hub
17.5.2 Tree
17.5.3 Mesh
17.5.4 Matrix representation
17.6 generic network switching philosophies
17.6.1 Circuit switching
17.6.2 Message switching
17.6.3 Packet switching
17.7 Broadcast network topologies
17.7.1 Bus or multidrop
17.7.2 Passive ring
17.7.3 Active ring
17.8 Transmission media
17.9 Interconnected networks
17.10 User and provider network views
17.11 Connection-oriented and connectionless services
17.12 Layered network architectures
17.12.1 ISO OSI protocol reference model
17.12.2 Network layers in use
17.13 Summary
17.14 Problems
18 Network protocols
18.1 Introduction
18.2 Physical layer
18.2.1 A physical layer protocol-X.21
18.3 Data-link layer
18.3.1 Synchronisation
18.3.2 Error control
18.3.3 Flow control
18.3.4 A data-link protocol-HDLC
18.4 Network layer
18.4.1 Routing
18.4.2 Congestion control
18.4.3 Error control
18.4.4 Quality of service
18.4.5 A connection-oriented network level protocol-X.25 PLP
18.4.6 A connectionless network level protocol(CLNP)
18.4.7 Use of primitives
18.5 Transport layer
18.5.1 Message segmentation and reassembly
18.5.2 Multiplexing and parallel virtual circuit transmission
18.5.3 End-to-end error and flow control
18.5.4 Use of well known and ephemeral ports
18.5.5 A Transport level protocol-TP4
18.6 Session layer
18.6.1 Session connection,maintenance and release
18.6.2 Dialogue supervision
18.6.3 Recovery
18.6.4 A session level protocol-ISO-SP
18.7 Presentation layer
18.7.1 Translation between local and transfer syntaxes
18.7.2 Abstract syntax notation 1(ASN.1)
18.7.3 A presentation level protocol-ISO-PP
18.8 Application layer
18.9 Non-ISO protocol stacks
18.10 Summary
18.11 Problems
19 Network performance using queueing theory(M.E.Woodard)
19.1 Introduction
19.1.1 The arrival process
19.1.2 Queueing systems
19.2 The M/M/1 queue
19.2.1 The equilibrium probabilities
19.2.2 Performance measures
19.3 The M/M/1/N queue
19.3.1 General Markovian queueing equations
19.3.2 The M/M/N/N queue
19.3.3 The M/M/N/N/K queue
19.3.4 M/M/N/N+J queue(Erlang-C equation)
19.3.5 Distribution of waiting times
19.4 M/M/N/K/K queue:queueing behaviour in a mobile communication system
19.4.1 Speech source model
19.4.2 Equilibrium probability
19.5 Summary
19.6 Problems
20 Switched networks and WANs
20.1 Introduction
20.2 WAN characteristics and classification
20.3 Application of graph theory to core networks
20.3.1 Topology,cost and capacity matrices
20.3.2 Network capacity
20.3.3 Network connectivity
20.4 The UK public network
20.4.1 The traditional analogue network
20.4.2 The modern digital network
20.5 Multiplexing
20.5.1 The plesiochronous digital hierarchy
20.5.2 SDH and SONET
20.6 Circuit switching
20.6.1 Space switching
20.6.2 Time switching
20.6.3 Time-space-time and space-time-apace switching
20.6.4 Multi-stage space switches
20.6.5 Switch connectivity
20.6.6 Concentration and expansion
20.6.7 Switch design
20.6.8 Probability of blocking
20.6.9 Circuit switched data over the PSTN
20.7 Packet switching
20.7.1 Packet switched data over the PSTN
20.7.2 Packet switching
20.8 Integrated services digital network(ISDN)
20.8.1 ISDN structure
20.8.2 Basic and primary rate access
20.8.3 ISDN services
20.9 Signalling
20.9.1 In-channel and common channel signaling
20.9.2 Signalling system No.7
20.10 Asynchronous transfer mode and the broadband ISDN
20.10.1 Transport mechanism
20.10.2 Service classes
20.10.3 Connection admission control
20.10.4 Access protocols
20.10.5 Synchronous versus asynchronous transfer modes
20.10.6 ATM versus IP
20.11 Access technologies
20.11.1 Digital subscriber line
20.11.2 Fibre
20.11.3 Cable
20.11.4 Broadband fixed wireless access
20.11.5 Commparison of access network technologies
20.11.6 Convergence of access network services
20.12 Summary
20.13 Problems
21 Broadcast networks and LANs
21.1 Introduction
21.2 LAN topologies
21.3 LAN protocol stack
21.3.1 Fixed access multiplexing
21.3.2 Polling
21.3.3 Token passing
21.3.4 Contention
21.4 Popular wired-LAN standards
21.4.1 Ethernet(IEEE 802.3)
21.4.2 Token ring(IEEE 802.5)
21.5 Wireless LANs
21.5.1 WLAN(IEEE 802.11)
21.5.2 HIPERLAN
21.6 Wireless personal area networks
21.6.1 Bluetooth(IEEE 802.15.1)
21.6.2 Ohter IEEE 802.15 PAN technologies
21.7 Home networking technologies
21.7.1 Wired home networsks
21.7.2 Wireless home networks
21.8 Residential Rateways
21.9 Summary
21.10 Problems
Appendix A Tabulated values of the error function
Appendix B Summations of common series
Appendix C Internationl Apphaber No.5
Appendix D LAN/MAN example
Standards
WWW addresses
Bibliography
Index
Acknowledgements
List of abbreviations
List of principal symbols
1 Digital communications overview
1.1 Electronic communications
1.2 Sources and sinks of information
1.3 Digital communications equipment
1.3.1 CODECs
1.3.2 Source,security and error control coding
1.3.3 Multiplexers
1.3.4 MODEMs
1.3.5 Multiple accessing
1.4 Radio receivers
1.5 Signal transmission
1.5.1 Line transmission
1.5.2 Radio transmission
1.6 Switching and networks
1.7 Advantages of digital communications
1.8 Summary
Part One Signals and systems theory
2 Periodic and transient signals
2.1 Introduction
2.2 Periodic signals
2.2.1 Sinusoids,cisoids and phasors
2.2.2 Fourier series
2.2.3 Conditions for existence,convergence and Gibb's phenomenon
2.2.4 Bandwidth,rates of change,sampling and aliasing
2.3 Transient signals
2.3.1 Fourier transforms
2.3.2 Practical calculation of Fourier transforms
2.3.3 Fourier transform pairs
2.3.4 Fourier transform theorems and convolution
2.4 Power and enegy sectra
2.5 Generalised orthogonal function expansions
2.5.1 Review of vectors
2.5.2 Vector interpretation of waveforms
2.5.3 Orthogonal and orthonormal signals
2.5.4 Evaluation of basis function coefficients
2.5.5 Error energy and completeness
2.6 Correlation functions
2.7 Summary
2.8 Problems
3 Random Signals and noise
3.1 Introduction
3.2 Probability theory
3.2.1 Conditional probabilities,joint Probabilities and Bayes's rule
3.2.2 Statistical independence
3.2.3 Discrete probability of errors in a data block
3.2.4 Cumulative distributions and probability density functions
3.2.5 Moments,percentiles and modes
3.2.6 Joint and marginal pdfs,correlation and covariance
3.2.7 Joint moments,correlation and covariance
3.2.8 Joint Gaussian raussian random variables
3.2.9 Addition of random variables and the central limit theorem
3.3 Random processes
3.3.1 Stationarity and ergodicity
3.3.2 Strict and loose sense Gaussian processes
3.3.3 Autocorrelation and power spectral density
3.3.4 Signal memory,decorrelation time and white noise
3.3.5 Cross correlation of random processes
3.4 Summary
3.5 Problems
4 Linear systems
4.1 Introduction
4.2 Linear systems
4.2.1 Properties of linear systems
4.2.2 Importance of linear systems
4.3 Time domain description of linear systems
4.3.1 Linear differential equations
4.3.2 Discrete signals and matrix algebra
4.3.3 Continuous signals,convolution and impulse response
4.3.4 Physical interpretation of y(t)=h(t)*x(t)
4.3.5 Step response
4.4 Frequency domain description
4.5 Causality and the Hibert transform
4.6 Random signals and linear systems
4.6.1 Power spectral densities and linear systems
4.6.2 Noise bandwidth
4.6.3 Pdf of filtered noise
4.6.4 Spectrum analysers
4.7 Non-linear systems and transformation of random variables
4.7.1 Rayleigh pdf
4.7.2 Chi-square distributions
4.8 Summary
4.9 Problems
Part Two Digital communications principles
5 Sampling,multiplexing and PCM
5.1 Introduction
5.2 Pulse modulation
5.3 Sampling
5.3.1 Natural and flat topped sampling
5.3.2 Baseband sampling and Nyquist's criterion
5.3.3 Aliasing
5.3.4 Practical sampling,reconstruction and signal to distortion ratio
5.3.5 Bandpass sampling
5.4 Analogue pulse multiplexing
5.5 quantised PAM
5.6 Signal to quantisation noise ration(SNqR)
5.7 Pulse code modulation
5.7.1 SNqR for linear PCM
5.7.2 SNR for decoded PCM
5.7.3 Companded PCM
5.7.4 PCM multiplexing
5.8 Bandwidth reduction techniques
5.8.1 Delta PCM
5.8.2 Differential PCM
5.8.3 Adaptive DPCM
5.8.4 Delta modulation
5.8.5 Adaptive delta modulation
5.9 Summary
5.10 Problems
6 Baseband transmission and line coding
6.1 Introduction
6.2 Baseband centre point detection
6.2.1 Baseband binary error rates in Gaussian noise
6.2.2 Multilevel baseband signalling
6.3 Error accumulation over multiple hops
6.4 Line coding
6.4.1 Unipolar signalling
6.4.2 Polar signalling
6.4.3 Dipolar signalling
6.4.4 Bipolar alternate mark inversion signalling
6.4.5 Pulse synchronisation and HDBn coding
6.4.6 Coded mark inversion(CMI)
6.4.7 nBmT coding
6.5 Multiplex telephony
6.6 Digital signal regeneration
6.6.1 PCM line
6.6.2 Equalisation
6.6.3 Eye diagrams
6.6.4 Crosstalk
6.7 Symbol Timing recovery
6.8 Repeater design
6.9 Digital transmission in local loop
6.10 Summary
6.11 Problems
7 Decision theory
7.1 Introduction
7.2 A priori,conditional and a posteriori probabilities
7.3 Symbol transition matrix
7.3.1 Binary symmetric channel
7.4 Bayes's decision criterion
7.4.1 Decision costs
7.4.2 Expected conditional decision costs
7.4.3 Optimum decision rule
7.4.4 Optimum decision threshold voltage
7.4.5 Average unconditional decision cost
7.5 Neyman-Pearson decision criterion
7.6 Summary
7.7 Problems
8 Optimum filtering for transmission and reception
8.1 Introduction
8.2 Pulse shaping for optimum transmissions
8.2.1 Intersymbol interference(ISI)
8.2.2 Bandlimiting of rectangular pulses
8.2.3 ISI-free signals
8.2.4 Nyquist's vestigal symmetry theorem
8.2.5 Raised cosine filtering
8.2.6 Nyquist filtering for rectangular pulses
8.2.7 Duobinary signalling
8.2.8 Partial response signalling
8.3 Pulse filtering for optimum reception
8.3.1 Matched filtering
8.3.2 Correlation detection
8.3.3 Decision instant SNR
8.3.4 BER performance of optimum receivers
8.3.5 Comparison of baseband matched filtering and centre point detection
8.3.6 Differences between matched filtering and correlation
8.4 Root raised cosine filtering
8.5 Equalisation
8.6 Summary
8.7 Problems
9 Information theory,source coding and encryption
9.1 Introduction
9.2 Information and entropy
9.2.1 The information measure
9.2.2 Multisymbol alphabets
9.2.3 Commonly confused entities
9.2.4 Entropy of a binary source
9.3 Conditional entropy and redundancy
9.4 Information loss due to noise
9.5 Source coding
9.5.1 code efficiency
9.5.2 Decoding variable length codewords
9.6 Variable length coding
9.6.1 Huffman coding
9.7 Source coding examples
9.7.1 Source coding for speech signals
9.7.2 High quality speech coders
9.7.3 Audio coders
9.7.4 String coding
9.8 Data encryption
9.8.1 The locked box analogy
9.8.2 Secrecy
9.8.3 Substitution and permutation
9.8.4 Confusion,diffusion and the unicity distance
9.8.5 Block ciphers and stream ciphers
9.8.6 Product ciphers
9.8.7 Data encryption standard
9.8.8 Public key encryption
9.8.9 Hash functions and OEAP
9.8.10 Hybrid public key/private key encryption and PGP
9.9 Authentication
9.10 Integrity
9.11 Digital Signatures
9.12 Summary
9.13 Problems
10 Error control coding
10.1 Introduction
10.1.1 Error rate control concepts
10.1.2 Threshold phenomenon
10.1.3 Applications for error control
10.2 Hamming distance and codeword wight
10.3 (n,k)block codes
10.3.1 Single parity check code
10.4 Probability of error in n-digit codewords
10.5 Linear group codes
10.5.1 Members of the group code family
10.5.2 Performance prediction
10.5.3 Error detection and correction capability
10.6 Nearest neighbour decoding of block codes
10.6.1 Hamming bound
10.7 Syndrome decoding
10.7.1 The generator matrix
10.7.2 Syndrome table for error correction
10.8 Cyclic codes
10.8.1 Polynomial codeword generation
10.8.2 Interleaving
10.9 Encoding of convolutional codes
10.9.1 Tree diagram representation
10.9.2 Trellis diagram
10.9.3 State transittion diagram
10.10 Viterbi decoding of convoltional codes
10.10.1 Decoding window
10.10.2 Sequential decoding
10.11 Practical coders
10.12 Concatenated coding and turbo codes
10.12.1 Serially concatenated codes
10.12.2 Parallel-concatenated recursive systematic convolutional codes
10.12.3 Turbo decoding
10.12.4 Turbo code performance
10.12.5 Other applications of the turbo principle
10.13 Summary
10.14 Problems
11 Bandpass modulation of a carrier signal
11.1 Introduction
11.2 Spectral and ower efficiency
11.3 binary IF modulation
11.3.1 Binary amplitude shift keying(and on-off keying)
11.3.2 Binary phase shift keying(and phase reversal keying)
11.3.3 Binary frequency shift keying
11.3.4 BFSK symbol correlation and Sunde's FSK
11.3.5 Comparison of binary shift keying techniques
11.3.6 Carrier recovery,phase ambiguity and DPSK
11.4 Modulation techniques with increased spectral efficiency
11.4.1 Channel capacity
11.4.2 M-symbol phase shift keying
11.4.3 Amplitude/phase keying and quadrature amplitude modulation
11.4.4 quadrature phase shift keying(QPSK)and offset QPSK
11.4.5 Minimum shift keying
11.4.6 Gaussian MSK
11.4.7 Trellis coded modulation
11.5 Power efficient modulation techniques
11.5.1 Multidimensional signalling and MFSK
11.5.2 Orthogonal frequency division multiplex(OFDM)
11.5.3 Optimum constellation point packing
11.5.4 Optimum constellation point boundaries
11.6 Data modems
11.7 Summary
11.8 Problems
12 System noise and communications link budgets
12.1 Introduction
12.2 Physical aspects of noise
12.2.1 Thermal noise
12.2.2 Non-thermal noise
12.2.3 Combining white noise sources
12.3 System noise calculations
12.3.1 Noise temperature
12.3.2 Noise temperature of cascaded subsystems
12.3.3 Noise factor and noise figure
12.4 Radio communication link budgets
12.4.1 Antenna gain,effective area and efficiency
12.4.2 Free space and plane earth signal budgets
12.4.3 Antenna temperature and radio noise budgets
12.4.4 Receiver equivalent input CNR
12.4.5 Multipath fading and diversity reception
12.5 Fibre optic transmission links
12.5.1 Fibre types
12.5.2 Fibre transmission systems
12.5.3 Optical sources
12.5.4 Optical detectors
12.5.5 Optical amplifiers
12.5.6 Optical repeater and link budgets
12.5.7 Optical FDM
12.5.8 Optical signal routers
12.6 Summary
12.7 Problems
13 Communication systems simulation
13.1 Introduction
13.2 Equivalent complex baseband representations
13.2.1 Equivalent baseband signals
13.2.2 Equivalent baseband systems
13.2.3 Equivalent baseband systems output
13.2.4 Equivalent baseband noise
13.3 Sampling and quantisation
13.3.1 Sampling equivalent baseband signals
13.3.2 Quantisation
13.4 Modeling of signals,noise and systems
13.4.1 Random numbers
13.4.2 Random digital symbol streams
13.4.3 Noise and interference
13.4.4 Time invariant linear systems
13.4.5 Non-linear and time varying systems
13.5 Transformation between time and frequency domains
13.5.1 DFT
13.5.2 DFS
13.5.3 DFS spectrum and rearrangement of spectral lines
13.5.4 Conservation of information
13.5.5 Phasor interpretation of DFS
13.5.6 Inverse DFS and DFT
13.5.7 DFT accuracy
13.6 Discrete and cyclical convolution
13.7 Estimation of BER
13.7.1 Monte Carlo simulation
13.7.2 Quasi-analytic simulation
13.8 Summary
Part Three Application
14 Fixed-point microwaver communications
14.1 Introduction
14.2 Terrestrial microwaver links
14.2.1 Analogue systems
14.2.2 Digital systems
14.2.3 LOS link design
14.2.4 Other propagation considerations terrestrial links
14.3 Fixed-point satellite communications
14.3.1 Satellite frequency bands and orbital spacing
14.3.2 Earth station look angles and satellite range
14.3.3 Satellite link budgets
14.3.4 Slant path propagation considerations
14.3.5 Analogue FDM/FM/FDMA trunk systems
14.3.6 digital TDM/PSK/TDMA trunk systems
14.3.7 DA-TDMA,DSI and random access systems
14.3.8 Economics of satellite communications
14.3.9 VSAT systems
14.3.10 Satellite switched TDMA and onboard signal processing
14.4 Summary
14.5 Problems
15 Mobile and cellular radio
15.1 Introduction
15.1.1 private mobile radio
15.1.2 Radio paging systems
15.2 Mobile radio link budget and channel characteristics
15.2.1 Prediction of median signal strength
15.2.2 slow and fast fading
15.2.3 Dispersion,frequency selective fading and coherence bandwidth
15.2.4 Multipath modeling and simulation
15.3 Nationwide cellular radio communications
15.3.1 Introduction
15.3.2 Personal cordless communication
15.3.3 Analogue cellular radio communication
15.3.4 Cell sizes
15.3.5 System configuration
15.4 Digital TDMA terrestrial cellular systems
15.4.1 TDMA systems
15.4.2 TDMA data format and modulation
15.4.3 Speech and channel coding
15.4.4 Other operational constraints
15.4.5 Trunked radio for paramilitary use
15.5 Code division multiple access(CDMA)
15.5.1 The CDMA concept
15.5.2 CDMA receiver design
15.5.3 Spreading sequence design
15.5.4 Data modulation
15.5.5 CDMA multipath processing
15.5.6 The cdmaOne system
15.5.7 Frequency hopped transmission
15.6 Mobile satellite based systems
15.7 Third generation mobile cellular standards
15.7.1 Mobile data transmission
15.7.2 3G developments
15.7.3 Wideband CDMA
15.8 Summary
15.9 Problems
16 Video transmission and storage
16.1 Introduction
16.2 Colour representation
16.3 Conventional TV transmission systems
16.3.1 PAL encoding
16.3.2 PAL television receiver
16.3.3 Other encoding schemes
16.4 High definition TV
16.4.1 What is HDTV?
16.4.2 Studio standards
16.4.3 Transmissions
16.5 Digital video
16.6 Video data compression
16.6.1 Run length coding
16.6.2 Conditional replenishment
16.6.3 Transform coding
16.7 Compression standards
16.7.1 COST 211
16.7.2 JPEG
16.7.3 MPEG-1 and MPEG-2
16.7.4 MPEG-4
16.7.5 MPEG-7
16.7.6 H.261 and H.263
16.7.7 Model based coding
16.8 Digital video broadcast
16.9 Packet video
16.10 Summary
16.11 Problems
Part Four Networks
17 Metwork applications,topologies and architecture
17.1 Introduction
17.2 Network applications
17.3 Network function
17.4 Network classification
17.5 Switched network topologies and representation
17.5.1 Star or hub
17.5.2 Tree
17.5.3 Mesh
17.5.4 Matrix representation
17.6 generic network switching philosophies
17.6.1 Circuit switching
17.6.2 Message switching
17.6.3 Packet switching
17.7 Broadcast network topologies
17.7.1 Bus or multidrop
17.7.2 Passive ring
17.7.3 Active ring
17.8 Transmission media
17.9 Interconnected networks
17.10 User and provider network views
17.11 Connection-oriented and connectionless services
17.12 Layered network architectures
17.12.1 ISO OSI protocol reference model
17.12.2 Network layers in use
17.13 Summary
17.14 Problems
18 Network protocols
18.1 Introduction
18.2 Physical layer
18.2.1 A physical layer protocol-X.21
18.3 Data-link layer
18.3.1 Synchronisation
18.3.2 Error control
18.3.3 Flow control
18.3.4 A data-link protocol-HDLC
18.4 Network layer
18.4.1 Routing
18.4.2 Congestion control
18.4.3 Error control
18.4.4 Quality of service
18.4.5 A connection-oriented network level protocol-X.25 PLP
18.4.6 A connectionless network level protocol(CLNP)
18.4.7 Use of primitives
18.5 Transport layer
18.5.1 Message segmentation and reassembly
18.5.2 Multiplexing and parallel virtual circuit transmission
18.5.3 End-to-end error and flow control
18.5.4 Use of well known and ephemeral ports
18.5.5 A Transport level protocol-TP4
18.6 Session layer
18.6.1 Session connection,maintenance and release
18.6.2 Dialogue supervision
18.6.3 Recovery
18.6.4 A session level protocol-ISO-SP
18.7 Presentation layer
18.7.1 Translation between local and transfer syntaxes
18.7.2 Abstract syntax notation 1(ASN.1)
18.7.3 A presentation level protocol-ISO-PP
18.8 Application layer
18.9 Non-ISO protocol stacks
18.10 Summary
18.11 Problems
19 Network performance using queueing theory(M.E.Woodard)
19.1 Introduction
19.1.1 The arrival process
19.1.2 Queueing systems
19.2 The M/M/1 queue
19.2.1 The equilibrium probabilities
19.2.2 Performance measures
19.3 The M/M/1/N queue
19.3.1 General Markovian queueing equations
19.3.2 The M/M/N/N queue
19.3.3 The M/M/N/N/K queue
19.3.4 M/M/N/N+J queue(Erlang-C equation)
19.3.5 Distribution of waiting times
19.4 M/M/N/K/K queue:queueing behaviour in a mobile communication system
19.4.1 Speech source model
19.4.2 Equilibrium probability
19.5 Summary
19.6 Problems
20 Switched networks and WANs
20.1 Introduction
20.2 WAN characteristics and classification
20.3 Application of graph theory to core networks
20.3.1 Topology,cost and capacity matrices
20.3.2 Network capacity
20.3.3 Network connectivity
20.4 The UK public network
20.4.1 The traditional analogue network
20.4.2 The modern digital network
20.5 Multiplexing
20.5.1 The plesiochronous digital hierarchy
20.5.2 SDH and SONET
20.6 Circuit switching
20.6.1 Space switching
20.6.2 Time switching
20.6.3 Time-space-time and space-time-apace switching
20.6.4 Multi-stage space switches
20.6.5 Switch connectivity
20.6.6 Concentration and expansion
20.6.7 Switch design
20.6.8 Probability of blocking
20.6.9 Circuit switched data over the PSTN
20.7 Packet switching
20.7.1 Packet switched data over the PSTN
20.7.2 Packet switching
20.8 Integrated services digital network(ISDN)
20.8.1 ISDN structure
20.8.2 Basic and primary rate access
20.8.3 ISDN services
20.9 Signalling
20.9.1 In-channel and common channel signaling
20.9.2 Signalling system No.7
20.10 Asynchronous transfer mode and the broadband ISDN
20.10.1 Transport mechanism
20.10.2 Service classes
20.10.3 Connection admission control
20.10.4 Access protocols
20.10.5 Synchronous versus asynchronous transfer modes
20.10.6 ATM versus IP
20.11 Access technologies
20.11.1 Digital subscriber line
20.11.2 Fibre
20.11.3 Cable
20.11.4 Broadband fixed wireless access
20.11.5 Commparison of access network technologies
20.11.6 Convergence of access network services
20.12 Summary
20.13 Problems
21 Broadcast networks and LANs
21.1 Introduction
21.2 LAN topologies
21.3 LAN protocol stack
21.3.1 Fixed access multiplexing
21.3.2 Polling
21.3.3 Token passing
21.3.4 Contention
21.4 Popular wired-LAN standards
21.4.1 Ethernet(IEEE 802.3)
21.4.2 Token ring(IEEE 802.5)
21.5 Wireless LANs
21.5.1 WLAN(IEEE 802.11)
21.5.2 HIPERLAN
21.6 Wireless personal area networks
21.6.1 Bluetooth(IEEE 802.15.1)
21.6.2 Ohter IEEE 802.15 PAN technologies
21.7 Home networking technologies
21.7.1 Wired home networsks
21.7.2 Wireless home networks
21.8 Residential Rateways
21.9 Summary
21.10 Problems
Appendix A Tabulated values of the error function
Appendix B Summations of common series
Appendix C Internationl Apphaber No.5
Appendix D LAN/MAN example
Standards
WWW addresses
Bibliography
Index
猜您喜欢