计算机/网络
-
大数据处理技术与项目实战暂缺作者本书主要有以下三大特点:(1)理论与实战相结合,不仅对Hadoop组件基本原理、编程模型等基础理论进行深入的介绍,而且从环境搭建、案例分析、项目创建和代码实现等方面系统性地介绍如何基于hadoop组件接口开发大数据技术应用系统;(2)由浅入深,在实战方面,首先,基于接口实例,介绍接口功能及基本编程框架;然后,进一步基于综合项目案例,介绍项目实战开发的具体过程。使得读者深入浅出,避免读者陷入理解基本原理和接口,却难以具体设计和编程实现实际应用中大数据处理算法的困境;(3)系统开发前后端相结合,在项目实战案例中,本书不是仅仅介绍如何基于大数据平台实现大数据处理的过程,而是将Web系统的前后端相结合作为一个整体,进行项目总体设计和功能实现,更加贴切于现实的项目应用需求,从而提高了读者的项目实战能力和开发水平。
-
深度强化学习理论与实践龙强,章胜本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍了强化学习的模型,第5章简单介绍了深度学习和PyTorch编程框架。 本书可以作为理工科大学相关专业研究生的学位课教材,也可以作为人工智能、机器学习相关专业高年级本科生的选修课教材,还可以作为相关领域学术研究人员、教师和工程技术人员的参考资料。
-
计算贝叶斯统计导论计算贝叶斯统计导论有意义地使用高级贝叶斯方法需要对基本原理有很好的理解。这本引人入胜的书解释了支撑贝叶斯模型构建和分析的思想,特别侧重于计算方法和方案。本书的独特之处是对可用软件包进行了广泛的讨论,并对贝叶斯推理进行了简短但完整且数学严谨的介绍。本书介绍了蒙特卡罗方法、马尔可夫链蒙特卡罗方法和贝叶斯软件,另外还介绍了模型验证和比较、跨维MCMC和条件高斯模型。本书所包含的问题使本书适合作为贝叶斯计算的第yi门研究生课程的教科书。对贝叶斯软件的广泛讨论——R/R- inla、OpenBUGS、JAGS、STAN和BayesX——使得它对来自统计之外的研究人员和研究生也很有用。
-
人工智能算法案例大全李一邨本书的编程语言以Python为主,详细介绍了人工智能算法的主流类别,涉及常见的数据特征处理、回归模型、基于实例的算法、树方法、神经网络、自然语言处理、社会网络、遗传算法和推荐算法。本书针对每一大类算法都介绍了该门类下的经典算法,并运用常见算法库以代码实现为目的,以商业分析、金融投资、科研辅助和工程优化等案例为对象,逐步讲解每一种算法的实现方法及在案例分析中的运用,部分案例配备了教学视频,可扫码实时观看。同时,随书还提供了程序源代码、授课用PPT等海量附加学习资源。本书适用的读者对象包括:商业分析师、高校科研工作者、互联网企业的算法工程师、大中专院校相关专业师生以及其他需要掌握人工智能算法知识的读者。
-
人工智能时代的治道变革陈鹏本书在对人工智能技术的内涵、构成和各国对人工智能采取的监管政策进行梳理的基础上,从哲学、伦理、道德、法律等方面对人工智能技术在应用过程中可能引发的不确定性风险进行分析,提出了相应的变革之道。全书共有十一章,内容包括人工智能技术的内涵与构成,各国对人工智能采取的监管政策,人工智能对就业、医疗、金融和司法等领域的的影响,人工智能主体性的哲学和伦理审视,人工智能人格权确认的道德风险和法律困境以及人工智能时代的公共政策议程,政府治理、算法与权力的博弈,公共安全和全球治理秩序等。
-
视觉语言交互中的视觉推理研究牛玉磊《视觉语言交互中的视觉推理研究》的作者牛玉磊博士于2020年在中国人民大学取得博士学会,后前往美国哥伦比亚大学开展博士后研究工作。本书从知识建模和知识推断两方面入手,深入研究了视觉语言交互任务中的视觉推理问题。《视觉语言交互中的视觉推理研究》共五章:第1章主要介绍了计算机视觉与自然语言处理交叉领域中交互类问题的研究背景,并分别从单轮交互、多轮交互、知识偏差三个角度选取了指称语理解、视觉对话、视觉问答三个经典任务展开讨论。第2章主要介绍了单轮交互情形的代表性视觉推理任务,即指称语理解问题,提出了变分背景框架,根据视觉图像和指称语文本的联系及视觉物体之间的关系提取语义背景信息,并根据背景信息对指称语进行定位。第3章介绍了多轮交互情形的代表性视觉推理任务,即视觉对话问题,提出了递归注意力机制,通过视觉指代消解的思想对图像、对话和问题之间的联系进行建模,优化视觉表示。第4章介绍了知识偏差情形的代表性视觉推理任务,即视觉问答问题,基于因果推理提出了反事实视觉问答框架,在训练环境和测试环境的答案分布不一致情况下,通过因果效应的视角提取并去除语言偏差。第5章对本书进行了总结,并对未来研究方向进行了展望。
-
元宇宙底层逻辑吴刚,蔺静茹本书首先带领读者体验一个当前著名的经典元宇宙项目Decentraland,让读者直观地了解元宇宙是什么样子,然后深入浅出地解析元宇宙的五大底层构造逻辑,包括元宇宙的时空逻辑、元宇宙的社会逻辑、元宇宙的经济逻辑、元宇宙的治理逻辑,以及元宇宙的发展逻辑。本书全面整理了元宇宙赖以发展的前沿技术及其背后的驱动规律,适合元宇宙领域的从业者、元宇宙项目的技术带头人和创业团队,元宇宙产业政策的制定者,以及对元宇宙感兴趣、希望深入理解元宇宙到底是什么的广大读者阅读。
-
点云配准从入门到精通郭浩三维点云处理技术广泛应用在逆向工程、CAD/CAM、机器人学、测绘遥感、机器视觉、虚拟现实、人机交互、无人驾驶和元宇宙等诸多领域。点云配准作为三维视觉领域的一个重要分支,已有40多年的发展历史,本书则系统性地对近些年来已经成熟的算法和工具进行梳理和总结。全书分两部分,第一部分为硬核技术篇(第1~4章),详细介绍了点云配准概念、应用领域,以及点云配准必要的数理知识,最后对点云配准过程中相关关键步骤(如关键点提取、特征描述等)所涉及的经典算法进行理论与实战的多维展示,为读者深入了解复杂配准算法做好前期理论与技术储备工作。第二部分为算法应用篇(第5~6 章),涵盖了十几个开源的刚性与非刚性配准经典算法,从算法原理、理论基础、技术实现、应用案例及优缺点等方面进行详细介绍,以算法的源码实现分析来帮助读者搞清楚每一个算法的细节与计算过程。最终通过算法的应用案例分析,让读者从理论、技术和应用层面重新评价与认识每一个算法,助力产业界的读者快速将相关技术应用落地,学术界的读者快速系统地完成入门与提升。随书附赠程序源代码、案例高清效果图和结果视频,以及授课用PPT,力求从多个角度提升读者阅读体验和知识含量。本书可作为科研人员和公司产品开发工程师的参考指南,也可作为计算机图形学、机器人学、遥感测量、虚拟现实、人机交互、CAD/CAM逆向工程等领域相关专业的高年级本科生、研究生的学习手册。
-
机器学习中的标记增强理论与应用研究徐宁《机器学习中的标记增强理论与应用研究》由东南大学计算机科学与工程学院助理研究员徐宁撰写。全书聚焦标记端多义性这一当今机器学习领域的热点问题,针对学习过程中不可避免的信息损失这一突出问题,提出了标记增强的概念,以期在不增加额外数据标注负担的前提下,挖掘训练样本中蕴含的标记重要性差异信息,将逻辑标记转化为标记分布。《机器学习中的标记增强理论与应用研究》共六章:第1章绪论,介绍了全书的研究背景和研究内容。第2章标记增强研究进展,介绍了标记增强的研究进展。第3章标记增强理论框架,构建了标记增强的理论框架。第4章面向标记分布学习的标记增强,提出了面向标记分布学习的标记增强。第5章标记增强在其他学习问题上的应用,将标记增强应用到其他学习问题上。第6章总结与展望,总结现有工作,并在此基础上进行展望。
-
网络智能化中的深度强化学习技术戚琦,付霄元,庄子睿,王敬宇,廖建新随着人工智能技术的广泛应用,网络智能化近年来受到广泛的关注,已经成为下一代移动通信与未来网络的重要技术。阿尔法围棋(AlphaGo)之后,深度强化学习不断推陈出新,为网络中的决策问题提供了有效的潜在解决方案。本书系统介绍了网络智能化中深度强化学习的基本理论、算法及应用场景。全书共8章,针对互联网、移动通信网、边缘网络、数据中心等典型网络,阐述了网络管理、网络控制、任务调度等决策需求,深入论述了深度强化学习的模型构建与应用技术。第1章介绍了网络智能的需求与挑战;第2章介绍了先进的深度强化学习模型与方法;第3~6章论述了无线接入优化、网络管理、网络控制与任务调度等普遍网络管控任务中,深度强化学习技术的应用方法;第7章和第8章论述了深度强化学习在流媒体控制以及自组织网络等典型场景中的新研究进展。 本书可为高等院校计算机和通信相关专业的本科生、研究生提供参考,也可供对网络智能化与深度强化学习领域感兴趣的研究人员和工程技术人员参考。