书籍详情
微电子制造科学原理与工程技术(英文版)
作者:(美)Stephen A.Campbell著
出版社:电子工业出版社
出版时间:2003-04-01
ISBN:9787505386266
定价:¥56.00
购买这本书可以去
内容简介
国外电子与通信教材系列。 本书系统地介绍了微电子制造科学原理与工程技术,覆盖了集成电路制造所涉及的所有基本单项工艺,包括光刻、等离子体和反应离子刻蚀、离子注入、扩散、氧化、蒸发、气相外延生长、溅射和化学气相淀积等。对每一种单项工艺,不仅介绍了它的物理和化学原理,还描述了用于集成电路制造的工艺设备。本书还介绍了各种先进的工艺技术,如快速热处理、下一代光刻、分子束外延和金属有机物化学气相淀积等。在此基础上本书讨论了如何将这些单项工艺集成为各种常见的集成电路工艺技术,如CMOS技术、双极型技术和砷化镓技术,还介绍了微电子制造的新领域,即微机械电子系统及其工艺技术。 本书可作为高等学校微电子专业本科生和研究生相应课程的教科书或参考书,也可供与集成电路制造工艺技术有关的专业技术人员学习参考。
作者简介
StephenA.Campbell:明尼苏达大学电子与计算机工程系教授兼明尼苏达大学微技术实验室主任。无论是在工业界还是在大学实验室,他在半导体器件制造领域都有着广泛的经验。他的研究领域主要包括快速热化学气相淀积、高性能栅介质、磁MEMS和纳米结构等。
目录
Contents
Parf I Overview and Materials 1
Chupte 1 An Introduction to Microelectronic Fabrication 3
1.1 Microelecuonic Technologies: A Simple Example 5
1.2 Unit Processes and Technologies 7
1.3 A Roadmap for the Course 8
1.4 Summary 9
Chaptcr 2 Semiconductor Substrates 10
2.1 Phase Diagrams and Solid Solubility° 10
2.2 Crystallography and Crystal Structure° 13
2.3 Crystal Defects 16
2.4 Czochralski Growth 21
2.S Bridgman Growth of GaAs 29
2.6 Float Zone Growth 30
2.7 Wafer Preparation and Specifications 31
2.8 Summary and Future Trends 33
Problems 33
References 34
Part II Unit Process I: Hot Processing
and lon lmplantation 37
Chapter 3 Oinusion 39
3.1 Fick' s Diffusion Equation in One Dimension 39
3.2 Atomistic Models of Diffusion 41
3.3 Analytic Solutions of Fick's Law 45
3.4 Conections to Simple Theory 47
3.5 Diffusion Coefficients for Common Dopants 48
3.6 Analysis of Diffused Profiles 52
3.7 Diffusion in SiO2 59
3.8 Diffusion Systems 60
3.9 SUPREM Simulations of Diffusion Profies 61
3.10 Summary 64
Problems 64
References 65
Chapter 4 Thermal Oxidation 68
4.1 The Deal-Grove Model of Oxidation 68
4.2 The Linear and Parabolic Rate Coefficients 71
4.3 The Initial Oxidation Regime 75
4.4 The Structure of SiO2 76
4.5 Oxide Characterization 77
4.6 The Effects of Dopants during Oxidation and Polysilicon
Oxidation 83
4.7 Oxidation-Induced Stacking Faults 86
4.8 Altemative Gate Insulators+ 88
4.9 Oxidation Systems 90
4.10 SUPREM Oxidations+ 92
4.11 Summary 93
Ptoblems 94
References 95
Chapter 5 Ion Implantation 98
5.1 Idealized Ion Implantation Systems 99
5.2 Coulomb Scattering° 104
5.3 Venical Ptojected Range 105
S.4 Channeling and Lateral Projected Range 110
5.5 Implantation Damage 112
S.6 Shallow Junction Formation+ 116
5.7 Buried Dielecuics+ 118
5.8 Ion Implantation Systems: Problems and Concerns 120
5.9 Implanted Profiles Using SUPREM+ 122
5.10 Summary 123
Problems 123
References 124
Chapter 6 Rapid Thermal Processing 127
6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption° 128
6.2 High-Intensity Optical Sources and Chamber Design 130
6.3 Temperature Measurement 133
6.4 Thermoplastic Stress° 137
6.5 Rapid Thermal Activation of Impurities 138
6.6 Rapid Thermal Processing of Dielectrics 140
6.7 Silicidation and Contact Formation 141
6.8 Alternative Rapid Thermal Processing Systems 142
6.9 Summary 143
Problems 143
References 144
Part III Unit Processes 2:
Pattern Transfer 149
Chapter 7 Optical Lithography 151
7.1 Lithography Overview 151
7.2 Diffraction° 155
7.3 The Modulation Transfer Function and Optical Exposures 158
7.4 Source Systems and Spatial Coherence 159
7.5 Contact/Proximity Printers 165
7.6 Projection Printers 167
7.7 Advanced Mask Concepts+ 172
7.8 Surface Reflections and Standing Waves 176
7.9 Alignment 178
7.10 Summary 179
Problems 180
References 180
Chapter 8 Photoresists 183
8.1 Photoresist Types 183
8.2 Organic Materials and Polymers° 184
8.3 Typical Reactions of DQN Positive Photoresist 186
8.4 Contrast Curves 187
8.5 The Critical Modulation Transfer Function 190
8.6 Applying and Developing Photoresist 191
8.7 Second-Order Exposure Effects 195
8.8 Advanced Photoresists and Photoresist Processes+ 196
8. 9 Summary 200
Problems 200
References 202
Chapter 9 Nnnnptical Lithngraphic Techniques+ 205
9.1 Interactions of High-Energy Beams with Matter° 205
9.2 Direct Write Electron Beam Lithography Systems 208
9.3 Direct Write Electron Beam Lithography Summary and Outlook 214
9.4 X-Ray Sources° 216
9.5 Proximity X-Ray Exposure Systems 219
9.6 Membrane Masks 221
9.7 Projection X-Ray Lithography 224
9.8 Projection Electron-Beam Lithography (SCALPEL) 225
9.9 E-Beam and X-Ray Resists 227
9.10 Radiation Damage in MOS Devices 228
9.11 Summary 230
Problems 231
References 231
Chapter 10 Vaeuum Science and Plasmas 236
10.1 The Kinetic Theory of Gasses° 236
10.2 Gas Row and Conductance 239
10.3 Ptessure Ranges and Vacuum Pumps 240
10.4 Vacuum Seals and Pressure Measurement 247
10.5 The DC Glow Discharge° 249
10.6 RF Discharges 251
10.7 High-Density Plasmas 252
10.8 Summary 255
Problems 255
References 256
Chapter 11 Etching 258
11.1 Wet Etching 259
11.2 Chemical Mechanical Polishing 264
11.3 Basic Regimes of Plasma Etching 266
11.4 High-Pressure Plasma Etching 267
11.5 Ion Milling 274
11.6 Reactive lon Etching 277
11.7 Damage in Reactive lon Etching+ 281
11.8 High-Density Plasma (HDP) Etching 282
11.9 Liftoff 283
11.10 Summary 285
Problems 2S5
References 286
Part IV Unit Processes 3: Thin Films 293
Chapter 12 Physical Deposition: Evaporation
and Sputtering 295
12.1 Phase Diagrams: Sublimation and Evaporation° 296
12.2 Deposition Rates 297
12.3 Step Coverage 301
12.4 Evaporator Systems: Crucible Heating Techniques 302
12.3 Multicomponent Films 304
12.6 An Introduction to Sputtering 305
12.7 Physics of Sputtering° 306
12.8 Deposition Rate: Spuner Yield 308
12.9 High-Density Plasma Sputtering 310
12.10 Morphology and Step Coverage 312
12.11 Sputtering Methods 315
12.12 Sputtering of Specific Materials 317
12.13 Stress in Deposited Layers 319
12.14 Sommary 320
Problems 321
References 322
Chapter 13 Ghemical Vapnr Deposition 326
13.1 A Simple CVD System for the Deposition of Silicon 326
13.2 Chemical Equilibrium and the Law of Mass Action° 328
13.3 Gas Flow and Boundary Layers° 331
13.4 Evaluation of the Simple CVD System 336
13.S Atmospheric CVD of Dielecuics 337
13.6 Low-Pressure CVD of DielecRics and Semiconductors
in Hot Wall Systems 339
13.7 Plasma-Enhanced CVD of Dielectrics 343
13.8 Metal CVD+ 347
13.9 Summary 350
Problems 350
References 351
Chapter 14 Epitaxial Growth 355
14.1 Wafer Cleaning and Native Oxide Removal 356
14.2 The Thermodynamics of Vapor-Phase Growth 360
14.3 Surface Reactions 364
14.4 Dopant Incorporation 365
14.3 Defects in Epitaxial Growth 366
14.6 Selective Growth+ 368
14.7 Halide Transport GaAs Vapor-Phase Epitaxy 369
14.8 Incommensurate and Strained Layer Heteroepitaxy 370
14.9 Metal Organic Chemical Vapor Deposition (MOCVD) 373
14.10 Advanced Silicon Vapor-Phase Epitaxial Growth Techniques 378
14.11 Molecular Beam Epitaxy Technology 381
14.12 BCF Tleory+ 386
14.13 Gas Source MBE and Chemicat Beam Epitaxy+ 391
14.14 Summary 392
Problems 392
References 393
Part V Process Integration 399
Chapter 15 Device Isolation, Contacts, and Metallization 401
15.1 Junction and Oxide Isolation 401
15.2 LOCOS Methods 404
15.3 Trench Isolation 407
15.4 Silicon on Insulator Isolation Techniques 411
15.S Semi-insulating Substrates 412
15.6 Schottky Contacts 414
15.7 Implanted Ohmic Contacts 418
15.8 Alloyed Contacts 421
15.9 Multilevel Metallization 423
15.10 Planarization and Advanced Interconnect 428
15.11 Summary 432
Problems 433
References 434
Chapter 16 CMOS Technoiogies 439
16.1 Basic Long-Channel Device Behavior 439
16.2 Early MOS Technologies 441
16.3 The Basic 3-um Technology 442
16.4 Device Scaling 447
16.5 Hot Carrier Effects and Drain Engineering 455
16.6 Processing for Robust Oxides 458
16.7 Latchup 459
16.8 Shallow Source/Drains and Tailored Channel Doping 461
16.9 Summary 464
Problems 464
References 466
Chapter 17 GaAs Technologies 471
17.1 Basic MESFET Operation 471
17.2 Basic MESFET Technology 472
17.3 Digital Technologies 474
17.4 MMIC Technologies 478
17.5 MODFETs 480
17.6 Optoelectronic Devices 482
17.7 Summary 484
Problems 484
References 485
Chapter 18 Silicon Bipolar Technologies 488
18.1 Review of Bipolar Devices: Ideal and Quasiideal Behavior 488
18.2 Second-Order Effects 489
18.3 Performance of BJTs 491
18.4 Early Bipolar Processes 494
18.5 Advanced Bipolar Processes 495
18.6 Hot Electron Effects in Bipolar Transistors 504
18.7 BiCMOS 504
18.8 Analog Bipolar Technologies 507
18.9 Summary 508
Problems 508
References 510
Chapter 19 MEMS 514
19.1 Fundamentals of Mechanics 515
19.2 Stress in Thin Films 517
19.3 Mechanical to Electrical Transduction 518
19.4 Mechanics of Common MEMS Devices 523
19.5 Bulk Micromachining Etching Techniques 527
19.6 Bulk Micromachining Process Flow 535
19.7 Surface Micromachining Basics 540
19.8 Surface Micromachining Process now 544
19.9 MEMs Actaators 546
19.10 High-Aspect Ration Microsystems Technology (HARMST) 551
19.11 Summary 553
Problems 554
References 557
Chapter 20 Integrated Circuit Manufacturing 559
20.1 Yield Prediction and Yield Tracking 560
20.2 Particle Control 565
20.3 Statistical Process Control 567
20.4 Full Factorial Experiments and ANOVA 569
20.5 Design of Experiments 571
20.6 Computer Integrated Mallufacturing 575
20.7 Summary 577
Problems 578
References 578
Appendix I. Acronyms and Gnmmon Symbols 580
Appendix II. Prnperties of Selected
Semiconductor Materials 585
Appendix III. Physical Constants 586
Appendix IV. Conversinn Factors 588
Appeudix V. Some Propenies of the Error Funetion 581
Appeudix VI. F Values 585
Appendix VII. SUPREM Commands 587
index 599
Parf I Overview and Materials 1
Chupte 1 An Introduction to Microelectronic Fabrication 3
1.1 Microelecuonic Technologies: A Simple Example 5
1.2 Unit Processes and Technologies 7
1.3 A Roadmap for the Course 8
1.4 Summary 9
Chaptcr 2 Semiconductor Substrates 10
2.1 Phase Diagrams and Solid Solubility° 10
2.2 Crystallography and Crystal Structure° 13
2.3 Crystal Defects 16
2.4 Czochralski Growth 21
2.S Bridgman Growth of GaAs 29
2.6 Float Zone Growth 30
2.7 Wafer Preparation and Specifications 31
2.8 Summary and Future Trends 33
Problems 33
References 34
Part II Unit Process I: Hot Processing
and lon lmplantation 37
Chapter 3 Oinusion 39
3.1 Fick' s Diffusion Equation in One Dimension 39
3.2 Atomistic Models of Diffusion 41
3.3 Analytic Solutions of Fick's Law 45
3.4 Conections to Simple Theory 47
3.5 Diffusion Coefficients for Common Dopants 48
3.6 Analysis of Diffused Profiles 52
3.7 Diffusion in SiO2 59
3.8 Diffusion Systems 60
3.9 SUPREM Simulations of Diffusion Profies 61
3.10 Summary 64
Problems 64
References 65
Chapter 4 Thermal Oxidation 68
4.1 The Deal-Grove Model of Oxidation 68
4.2 The Linear and Parabolic Rate Coefficients 71
4.3 The Initial Oxidation Regime 75
4.4 The Structure of SiO2 76
4.5 Oxide Characterization 77
4.6 The Effects of Dopants during Oxidation and Polysilicon
Oxidation 83
4.7 Oxidation-Induced Stacking Faults 86
4.8 Altemative Gate Insulators+ 88
4.9 Oxidation Systems 90
4.10 SUPREM Oxidations+ 92
4.11 Summary 93
Ptoblems 94
References 95
Chapter 5 Ion Implantation 98
5.1 Idealized Ion Implantation Systems 99
5.2 Coulomb Scattering° 104
5.3 Venical Ptojected Range 105
S.4 Channeling and Lateral Projected Range 110
5.5 Implantation Damage 112
S.6 Shallow Junction Formation+ 116
5.7 Buried Dielecuics+ 118
5.8 Ion Implantation Systems: Problems and Concerns 120
5.9 Implanted Profiles Using SUPREM+ 122
5.10 Summary 123
Problems 123
References 124
Chapter 6 Rapid Thermal Processing 127
6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption° 128
6.2 High-Intensity Optical Sources and Chamber Design 130
6.3 Temperature Measurement 133
6.4 Thermoplastic Stress° 137
6.5 Rapid Thermal Activation of Impurities 138
6.6 Rapid Thermal Processing of Dielectrics 140
6.7 Silicidation and Contact Formation 141
6.8 Alternative Rapid Thermal Processing Systems 142
6.9 Summary 143
Problems 143
References 144
Part III Unit Processes 2:
Pattern Transfer 149
Chapter 7 Optical Lithography 151
7.1 Lithography Overview 151
7.2 Diffraction° 155
7.3 The Modulation Transfer Function and Optical Exposures 158
7.4 Source Systems and Spatial Coherence 159
7.5 Contact/Proximity Printers 165
7.6 Projection Printers 167
7.7 Advanced Mask Concepts+ 172
7.8 Surface Reflections and Standing Waves 176
7.9 Alignment 178
7.10 Summary 179
Problems 180
References 180
Chapter 8 Photoresists 183
8.1 Photoresist Types 183
8.2 Organic Materials and Polymers° 184
8.3 Typical Reactions of DQN Positive Photoresist 186
8.4 Contrast Curves 187
8.5 The Critical Modulation Transfer Function 190
8.6 Applying and Developing Photoresist 191
8.7 Second-Order Exposure Effects 195
8.8 Advanced Photoresists and Photoresist Processes+ 196
8. 9 Summary 200
Problems 200
References 202
Chapter 9 Nnnnptical Lithngraphic Techniques+ 205
9.1 Interactions of High-Energy Beams with Matter° 205
9.2 Direct Write Electron Beam Lithography Systems 208
9.3 Direct Write Electron Beam Lithography Summary and Outlook 214
9.4 X-Ray Sources° 216
9.5 Proximity X-Ray Exposure Systems 219
9.6 Membrane Masks 221
9.7 Projection X-Ray Lithography 224
9.8 Projection Electron-Beam Lithography (SCALPEL) 225
9.9 E-Beam and X-Ray Resists 227
9.10 Radiation Damage in MOS Devices 228
9.11 Summary 230
Problems 231
References 231
Chapter 10 Vaeuum Science and Plasmas 236
10.1 The Kinetic Theory of Gasses° 236
10.2 Gas Row and Conductance 239
10.3 Ptessure Ranges and Vacuum Pumps 240
10.4 Vacuum Seals and Pressure Measurement 247
10.5 The DC Glow Discharge° 249
10.6 RF Discharges 251
10.7 High-Density Plasmas 252
10.8 Summary 255
Problems 255
References 256
Chapter 11 Etching 258
11.1 Wet Etching 259
11.2 Chemical Mechanical Polishing 264
11.3 Basic Regimes of Plasma Etching 266
11.4 High-Pressure Plasma Etching 267
11.5 Ion Milling 274
11.6 Reactive lon Etching 277
11.7 Damage in Reactive lon Etching+ 281
11.8 High-Density Plasma (HDP) Etching 282
11.9 Liftoff 283
11.10 Summary 285
Problems 2S5
References 286
Part IV Unit Processes 3: Thin Films 293
Chapter 12 Physical Deposition: Evaporation
and Sputtering 295
12.1 Phase Diagrams: Sublimation and Evaporation° 296
12.2 Deposition Rates 297
12.3 Step Coverage 301
12.4 Evaporator Systems: Crucible Heating Techniques 302
12.3 Multicomponent Films 304
12.6 An Introduction to Sputtering 305
12.7 Physics of Sputtering° 306
12.8 Deposition Rate: Spuner Yield 308
12.9 High-Density Plasma Sputtering 310
12.10 Morphology and Step Coverage 312
12.11 Sputtering Methods 315
12.12 Sputtering of Specific Materials 317
12.13 Stress in Deposited Layers 319
12.14 Sommary 320
Problems 321
References 322
Chapter 13 Ghemical Vapnr Deposition 326
13.1 A Simple CVD System for the Deposition of Silicon 326
13.2 Chemical Equilibrium and the Law of Mass Action° 328
13.3 Gas Flow and Boundary Layers° 331
13.4 Evaluation of the Simple CVD System 336
13.S Atmospheric CVD of Dielecuics 337
13.6 Low-Pressure CVD of DielecRics and Semiconductors
in Hot Wall Systems 339
13.7 Plasma-Enhanced CVD of Dielectrics 343
13.8 Metal CVD+ 347
13.9 Summary 350
Problems 350
References 351
Chapter 14 Epitaxial Growth 355
14.1 Wafer Cleaning and Native Oxide Removal 356
14.2 The Thermodynamics of Vapor-Phase Growth 360
14.3 Surface Reactions 364
14.4 Dopant Incorporation 365
14.3 Defects in Epitaxial Growth 366
14.6 Selective Growth+ 368
14.7 Halide Transport GaAs Vapor-Phase Epitaxy 369
14.8 Incommensurate and Strained Layer Heteroepitaxy 370
14.9 Metal Organic Chemical Vapor Deposition (MOCVD) 373
14.10 Advanced Silicon Vapor-Phase Epitaxial Growth Techniques 378
14.11 Molecular Beam Epitaxy Technology 381
14.12 BCF Tleory+ 386
14.13 Gas Source MBE and Chemicat Beam Epitaxy+ 391
14.14 Summary 392
Problems 392
References 393
Part V Process Integration 399
Chapter 15 Device Isolation, Contacts, and Metallization 401
15.1 Junction and Oxide Isolation 401
15.2 LOCOS Methods 404
15.3 Trench Isolation 407
15.4 Silicon on Insulator Isolation Techniques 411
15.S Semi-insulating Substrates 412
15.6 Schottky Contacts 414
15.7 Implanted Ohmic Contacts 418
15.8 Alloyed Contacts 421
15.9 Multilevel Metallization 423
15.10 Planarization and Advanced Interconnect 428
15.11 Summary 432
Problems 433
References 434
Chapter 16 CMOS Technoiogies 439
16.1 Basic Long-Channel Device Behavior 439
16.2 Early MOS Technologies 441
16.3 The Basic 3-um Technology 442
16.4 Device Scaling 447
16.5 Hot Carrier Effects and Drain Engineering 455
16.6 Processing for Robust Oxides 458
16.7 Latchup 459
16.8 Shallow Source/Drains and Tailored Channel Doping 461
16.9 Summary 464
Problems 464
References 466
Chapter 17 GaAs Technologies 471
17.1 Basic MESFET Operation 471
17.2 Basic MESFET Technology 472
17.3 Digital Technologies 474
17.4 MMIC Technologies 478
17.5 MODFETs 480
17.6 Optoelectronic Devices 482
17.7 Summary 484
Problems 484
References 485
Chapter 18 Silicon Bipolar Technologies 488
18.1 Review of Bipolar Devices: Ideal and Quasiideal Behavior 488
18.2 Second-Order Effects 489
18.3 Performance of BJTs 491
18.4 Early Bipolar Processes 494
18.5 Advanced Bipolar Processes 495
18.6 Hot Electron Effects in Bipolar Transistors 504
18.7 BiCMOS 504
18.8 Analog Bipolar Technologies 507
18.9 Summary 508
Problems 508
References 510
Chapter 19 MEMS 514
19.1 Fundamentals of Mechanics 515
19.2 Stress in Thin Films 517
19.3 Mechanical to Electrical Transduction 518
19.4 Mechanics of Common MEMS Devices 523
19.5 Bulk Micromachining Etching Techniques 527
19.6 Bulk Micromachining Process Flow 535
19.7 Surface Micromachining Basics 540
19.8 Surface Micromachining Process now 544
19.9 MEMs Actaators 546
19.10 High-Aspect Ration Microsystems Technology (HARMST) 551
19.11 Summary 553
Problems 554
References 557
Chapter 20 Integrated Circuit Manufacturing 559
20.1 Yield Prediction and Yield Tracking 560
20.2 Particle Control 565
20.3 Statistical Process Control 567
20.4 Full Factorial Experiments and ANOVA 569
20.5 Design of Experiments 571
20.6 Computer Integrated Mallufacturing 575
20.7 Summary 577
Problems 578
References 578
Appendix I. Acronyms and Gnmmon Symbols 580
Appendix II. Prnperties of Selected
Semiconductor Materials 585
Appendix III. Physical Constants 586
Appendix IV. Conversinn Factors 588
Appeudix V. Some Propenies of the Error Funetion 581
Appeudix VI. F Values 585
Appendix VII. SUPREM Commands 587
index 599
猜您喜欢