自然科学
-
抽象分析教程John B. Conway本书涵盖了博士研究生一年级抽象分析课程的相关内容。前半部分介绍了测度论的核心内容,包括对 Fourier 变换的介绍,这些材料的学习可以在一个学期内轻松完成。后半部分涉及基础泛函分析,也适用于一个学期的学习。在基础知识之后,本书讨论了线性变换、对偶性、Banach 代数的元素和 C*-代数,并以 Hilbert 空间上正规算子的酉等价类的特征作为结束。 本书在内容上是自成一体的,读者只需要单变量函数和度量空间基础的背景知识。按照作者的理念,最好的学习方法是从特殊情况开始,然后进行一般情况的学习,学习中包含大量的示例和练习。 本书适合对分析学感兴趣的本科生、研究生和数学研究人员阅读参考。 -
解析数论Jean-Marie De Koninc本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。 -
Lie代数的分类和识别Libor ?nobl,Pavel Wi本书的目的是为将Lie代数和Lie群应用于解决科学和工程中出现的问题的研究人员和实践者提供工具。作者解决了用一种更合适的基来表示在任意基上得到的Lie代数的问题,在这种基中Lie代数的所有基本特征都是直接可见的。这包括实现直和分解、识别根和 Levi 分解、计算零根和 Casimir 不变量。每种算法都给出了实例。 对于低维Lie代数,这使得完全识别给定的Lie代数成为可能。作者提供了一个代表性列表,列出了所有维数小于或等于6的Lie代数及其重要性质,包括它们的 Casimir 不变量。该列表的排序方式,使识别变得容易,只使用Lie代数的与基无关的性质。他们还描述了某些具有完全或部分分类的任意有限维的幂零和可解Lie代数类,并详细讨论了它们的构造和性质。 本书的内容基于先前散布在期刊文章中的材料,其中许多文章由作者之一或两位作者与合作者共同撰写。本书的读者应该熟悉入门水平的Lie代数理论。 -
代数K-理论导论Charles A. Weibel通俗地讲,K-理论是一种探究数学对象(如环或拓扑空间)结构的工具,它利用适当参数化的向量空间并生成重要的内在不变量,这些不变量在代数和几何问题的研究中非常有用。代数K-理论是本书的主角,主要研究环的结构。然而,事实证明,即使在纯代数语境下工作,人们也需要使用同伦理论等技术来构造高阶K-群并进行计算。由此产生的代数、几何和拓扑在K-理论中的相互作用提供了数学统一性的迷人一瞥。本书是代数K-理论的综合介绍。它将K0和K1的经典代数技术与更新的用于高等K-理论的拓扑技术(如同伦理论、谱和上同调下降)相融合。内容涵盖从基础知识到最前沿的技术,包括数域的高等K-理论的计算以及与Riemann ζ函数的关系。::::::::::::::-本书提供了大量来自经典和新近代数K-理论的材料。对于经验丰富的研究生和在职研究人员来说,这是一本完美的参考书,他们愿意并渴望遵循作者的解释路径,并准备进行大量的进一步阅读和自主工作。许多富有启发性的例子和澄清性的评论有助于读者从全景的角度掌握代数K-理论的要点,整个论述为该主题的多样性和主题性提供了非常有价值和有用的指导。尽管本书并不是一本教科书,但它包含了必要的丰富背景材料,本书无疑是当前代数K-理论最具有时效性的介绍,也是对现有文献的出色补充。—Newsletter of the European Mathematical SocietyWeibel以一位经验丰富的圈内人士的权威展示了他重要而优雅的主题,强调了重要的结论,简要地呈现动机和特征以便让读者熟悉主题的形式……它包含了许多例子,巧妙地编织在叙述中,并有优秀的习题。—MAA Reviews -
黄海底栖动物常见种形态分类图谱张学雷《黄海底栖动物常见种形态分类图谱》分上、下两册,内容涵盖了环节动物、软体动物、节肢动物和棘皮动物等大型底栖生物的主要类群,以及刺胞动物、底栖鱼类等常见的较小门类,对小型底栖生物线虫也有较翔实的描述。上册共包括六部分,分别为多孔动物1科1种、刺胞动物9科22种、扁形动物2科2种、纽形动物7科10种、线虫动物19科73种、环节动物44科138种;下册共包括七部分,分别为星虫动物2科2种、软体动物42科76种、节肢动物43科76种、苔藓动物7科7种、腕足动物2科3种、棘皮动物19科29种、脊索动物22科45种。各部均以文字和图片(主要为实体图,部分是线条图)相结合的形式,描述相应门下各科常见于黄海的底栖种类形态特征,略述其生态习性、分布和参考文献,遇一科下有多属或种的情况编有分类检索表。 -
易懂的Lebesgue测度与积分导引Gail S. Nelson本书在本科生的实分析课程和低年级研究生的测度论与积分论课程之间提供了一座桥梁。主要目标是为学生们在研究生阶段可能遇到的问题做好准备,但对于很多低年级研究生来说本书也非常有用。本书从Lebesgue测度这个具体例子出发,循序渐进地引入了测度论的基础知识,并将Lebesgue积分作为Riemann积分的自然扩展。 接下来,本书定义了L^p空间;然后转向极限的讨论,这是实分析入门课程中的基本概念。本书还详细讨论了以下问题:一列Lebesgue可积函数何时收敛于一个Lebesgue可积函数?这意味着积分序列的什么特点?实分析入门课程中的另一个核心概念是完备性。这些L^p空间是否完备?在这种情况下,这究竟意味着什么?最后,本书简要概述了一般测度论。附录包含了适合用作结课论文或报告的建议。 本书采用了非常友好的阅读方式,适合各种水平的学生阅读,唯一的先修课程要求是本科的实分析课程。 -
矿物材料结构与表征洪汉烈《矿物材料结构与表征》重点介绍了矿物材料包括元素、晶体结构、颗粒形貌、孔结构、热性能、表面与界面在内的不同微观层次的结构特征,及其相关的基本概念、物理本质、测试方法、矿物材料性能与结构关系的表征应用内容。《矿物材料结构与表征》共9章,主要内容包括矿物材料元素成分组成、离子交换容量的测试技术与应用;矿物材料晶体结构X射线衍射、中子技术、同步辐射、核磁共振、穆斯堡尔谱的表征测量技术与应用;矿物材料的光学显微镜、扫描电子显微镜、透射电子显微镜、冷冻电子显微镜分析技术的方法与应用;矿物材料颗粒特性的表征技术与应用;矿物材料的孔结构表征技术方法与应用;矿物材料热分析技术与应用;矿物材料表面特性的表征技术与应用;矿物材料界面的原子力显微镜、扫描隧道显微镜、共聚焦激光扫描显微镜分析技术与应用。 -
变分学入门Mark Kot本书是变分法的研究生入门教程。读者将学习寻找最大化或最小化积分的函数的方法。本书按照历史顺序阐述了极值的充要条件,并通过来自力学、光学、几何学和其他领域的许多实例来说明这些条件。论述从简单的积分开始,包含单个自变量、单个因变量和单个导数,受弱变分的约束,但逐渐深入到更高级的主题,包括多元问题、约束极值、齐次问题、端点可变问题、破碎的极值、强变分和充分性条件。书中包含大量的线条图来阐明相关的数学内容。每章结尾都有推荐阅读,介绍相关的科学文献,并且有练习题巩固理解。::::::::::::::-本书遵循学科的历史发展,为读者提供了融合理论、技术和应用的全面内容……作者巧妙地将理论和应用与历史背景融合在一起,为我们呈现了一本非常有吸引力的书……导论章节很好地预示了接下来的内容:清晰的写作风格、精心设计的发展过程、恰当选择的线条图以及深思熟虑的推荐阅读……本书既可作为课程的教材,也可作为自学工具。练习题非常棒。—MAA ReviewsKot在符号表示方面表现出超乎寻常的敏感性(一个传统的陷阱!),并向读者展示了对符号细微差别的欣赏。每个想要学习此主题的人都应该先花几个小时来阅读本书。—Choice -
解译法规原作者:特兰德(美) 邓云飞,马金双翻译暂缺简介... -
半经典分析Maciej Zworski半经典分析提供了基于经典量子(粒子波)对应关系的偏微分方程技术。这些技术包括几何光学和 Wentzel-Kramers-Brillouin 近似等著名工具。本书研究的问题包括高能特征值渐近性和演化方程解的有效动力学。从数学的角度看,半经典分析是微局部分析的一个分支,广义上讲,是将调和分析和辛几何应用于线性和非线性偏微分方程的研究。本书旨在作为研究生级别的教材,向读者介绍偏微分方程中的半经典和微局部方法。它在后面的章节中增加了许多专门的高级主题,这些主题提供了与当前研究文献的联系。
