自然科学
-
数学与哲学张景中本书分11章探讨了数学与哲学上的许多问题。如变与不变、数与量、相同与不同、事物变化的连续性等等,既阐述了数学与哲学这两大学科各自的特点,又从多方面论述了哲学研究与数学研究的密不可分性;以生动的实例说明了哲学家是如此重视数学,而数学又始终在影响着哲学。在研究了古代和当代的主要哲学家和数学诸流派的各种观点之后,作者讲述了自己的许多独到的见解。第11章,“数学与暂学随想”,是作者多年来研究的心得与体会。 -
南水北调中线干渠藻类图谱毕永红,张春梅,宋高飞本书详细记录了采自南水北调中线干渠水域的藻类6门8纲21目37科69属124种(含3变种1变型),包括物种的中文名、拉丁名、鉴定文献、形态学特征、分布范围与生境等信息,并展示其光学显微镜照片或电子显微镜照片。书后附有藻类样本采集地位置、理化数据,以及中文名索引和拉丁名索引,便于读者查询和参考。 -
齐次马尔科夫过程建模的矩阵方法[俄罗斯] 鲍里斯·泽连措夫 著《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善(俄文)》是一部俄文版的概率论专著,中文书名或可译为《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善》。该书作者为鲍里斯·泽连措夫,俄罗斯人,技术科学博士,西伯利亚国立电信与信息大学(新西伯利亚)高等数学教研室教授,主要研究方向为复杂概率系统的数学模拟。该书提出了离散时间和连续时间的马尔科夫过程模型,在其基础上,计算了瞬态和稳态下的状态子集和状态的概率、时间和频率特征,并提出了两种扩大状态的途径:利用子集的边界状态和基于子集之间的转移频率,该书可供解决复杂系统建模问题的工程师和设计师,以及相关专业的学生和科研人员使用。 -
无穷的玩艺 数学的探索与履行[匈]罗兹?佩特(Rózsa Péter) 著;朱梧槚 袁相碗 郑毓信 译《无穷的玩艺——数学的探索与旅行》是数学家路沙·彼得所写的数学普及读物,是一本引人入胜的名著。不同任何公式,着重讨论数学的思想方法。从原始的计数开始,到达数理逻辑这一现代数学分支为止。 -
多赋范空间和广义函数.理论及应用[白俄]尤里.武武尼基场《多赋范空间和广义函数.理论及应用(俄文)》是一部俄文原版的有关泛函分析和广义函数方面的数学专著,中文书名可译为《多赋范空间和广义函数.理论及应用(俄文)》。作者为尤里·武武尼基杨,他是白俄罗斯人,数学物理科学博士,在白俄罗斯格罗德诺市的格罗德诺国立大学基础和应用数学教研室担任教授。 -
四川省爬行动物识别手册蔡波1)确定四川省分布的爬行动物名录与分类体系以《四川省两栖爬行动物分布名录》的爬行动物名录为基础,跟踪国内外蛇亚目最新研究成果,综合已有的系统发育关系,提出科学的系统分类体系。2)制作四川省爬行动物分类检索表以《四川省两栖爬行动物分布名录》的爬行动物名录为基础,依托成都生物研究所两栖爬行动物标本馆馆藏爬行纲标本,结合必要的外馆的馆藏标本查看,参考国际爬行纲最新的分类学研究成果,采用形态学研究方法,以种内广适、种间断离、易识别、能反映系统发育关系等原则,重点对鳞片、体色、纹路等特征进行分类学特征甄别与定性定量分析,编制科学、直观、实用的检索表。 -
代数数论及其通信应用冯克勤,刘凤梅,杨晶随着数字通信技术的发展和普及,组合数字(包括图论)、数论和代数学成为信息领域的重要数学工具。本书在第一部分通俗地介绍经典代数数论基本知识,内容包括代数数域和它的代数整数环、理想的素理想因子分解、理想类群和类数、局部数域理论,以及高斯和与雅可比和的计算。在第二部分讲述代数数论在通信领域的一些应用,内容包括组合设计、纠错码、序列的自相关性能和复杂度,以及布尔函数的密码学性质。 -
威廉·洛厄尔·普特南数学竞赛 1985—2000Kiran S. Kedlaya, Bj本书是威廉·洛厄尔·普特南数学竞赛的重要参考资料,其特色是将问题置于重要的数学主题的背景下。作者强调了竞赛中的问题与其他问题、课程和更高级主题的联系。最好的问题包含与当前重要研究相关的复杂思想的核心,但这些问题对本科生来说是可以理解的。问题的解答是根据美国数学月刊、数学杂志和参赛者的答案汇编而成的。多种解法可以增强读者的理解,拓展更多与手头问题相关的技术。此外,本书还包含延伸阅读的建议、每个问题的提示、完整的解答以及有关竞赛的背景信息。本书作为深入理解数学的途径,适合学生、教师以及任何对解题感兴趣的人阅读。每一章都解决了几个现实问题,同时介绍了所需的建模优化技术和仿真。这使读者可以了解这些方法是如何使用的,从而更容易掌握基础知识。—CERN Courier本书对于任何对数学竞赛感兴趣或只是尝试挑战大学水平数学的人来说都是无价的。所有的理论都是从简单、易于陈述和美丽的问题开始的,而本书提供了丰富的内容。—The London Mathematical Society -
矩阵半张量积讲义 卷四程代展本书是《矩阵半张量积讲义》的第四卷。内容包括两个部分:①一般有限集合上的动态系统的建模与控制,主要介绍有限集(包括有限环与有限格)上的动态系统。②跨维数欧氏空间的拓扑结构、等价性与商空间、跨维数动态系统及跨维半群系统的建模与控制。矩阵半张量积为这两类系统的研究提供了有效的工具。本书所需要的预备知识仅为工科大学本科的数学知识,包括线性代数、微积分、常微分方程、初等概率论。相关的线性系统理论及点集拓扑、抽象代数、微分几何等的初步概念在卷一附录中已给出。不感兴趣的读者亦可略过相关部分,这些不会影响对本书基本内容的理解。 -
数学物理方程现代数值方法李剑,白云霄,赵昕本书主要内容包括偏微分方程基础知识、Sobolev空间基本知识、Galerkin方法、有限元方法及其误差估计、泊松问题的其他数值方法、不可压缩Navier-Stokes问题有限元应用、修正的特征有限元方法和随机不可压缩流问题全离散有限元方法。有些章末附有课后练习,是对书中重点内容的升华和延伸。本书既有经典数值方法和理论,又有计算方法的新进展;不仅有算法的描述,同时还有算法的实现,可以满足各种读者不同的需要。
