自然科学
-
丘成桐数学论文选集曹怀东,李骏,[美]孙理察丘成桐是当代最杰出的数学家之一,因其在微分几何领域的工作而获得了许多荣誉,其中包括数学界最高荣誉——菲尔兹奖。丘成桐也因其在代数和凯勒几何、广义相对论及弦理论等方面的工作而闻名,他在这些研究领域的建立和发展过程中产生了巨大的影响。本书收录了丘成桐自1971年至1991年已发表的部分数学论文——这一时期他在包括几何分析、凯勒几何和广义相对论在内的众多学科中取得了突破性的成就。本书按照主题领域组织内容,包括度量几何与极小子流形、度量几何与调和函数、本征值与广义相对论,以及凯勒几何。书中还收录了相关领域专家的评论和反映书中所讨论的思想发展过程的回顾。 -
张奠宙文集 第二卷《张奠宙文集》 编辑委员会本书为《张奠宙文集》第二卷,汇集了张奠宙先生写作(含合作)的百余篇文章和传记,分为三部分:第一部分是现代数学史,包括20世纪数学史、中国现代数学史、华人数理名家研究、中国数学教育史和数学家传记等;第二部分是数学文化与数学普及,包括数学文化、数学欣赏和数学普及三类文章;第三部分是杂论,包括中国科学史、学术媒介与学术单位、人物回忆等内容。把数学史、数学文化研究,同数学教育、数学普及工作结合起来,为数学教育而研究数学史、数学文化,正是张奠宙先生重要的数学史治学思想和数学教育思想。 -
面向计算机科学家的量子计算(美)诺森·S.亚诺夫斯基(Noson S. Yanofsky)(美)米尔科·A.曼努奇(Mirco A. Mannucci) 著 何红梅 朱振环 译量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。 -
简明实用速算法端木宁 著本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学教学中,即能明显提高学生的解题速度和学习效果;若能广泛应用于财会、商业、科研活动中,更能提高人们的工作效率和社会效益。本书可作为中小学校、财会、商贸及师范院校的教辅参考用书,也适用于青少年及从事财会、商业、科研等活动的成人自学。为了方便我国小学各年级读者学习,在2018年美国版《高位分段累加算术》(HIGH ORDER PIECEWISE ARITHMETICS)的基础上增设了减法运算中的退位速算法和“附录三:速算基础习题(小学一至六年级分阶段基础练习题)”供小学读者速算训练用。 -
从群到李代数冯承天本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等.第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体.第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间.第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理.第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中的应用. 本书起点低,论述详尽且严格,举例丰富,且前后呼应,是一本论述群、群的表示、李群、李代数表示及其应用的可读性较强的读物,谨供广大数学和物理科学的热爱者们阅读、参考. -
数学的历程张天蓉《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的π、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。 -
经济应用数学孙明岩暂缺简介... -
从七种思维看数字经济郑新立 刘西友 著党的二十大报告中指出,不断提高战略思维、历史思维、辩证思维、系统思维、创新思维、法治思维、底线思维能力,为前瞻性思考、全局性谋划、整体性推进党和国家各项事业提供科学思想方法。当前,顺应信息化、数字化、网络化、智能化的时代特征、实践规律和发展趋势,要求每一个领导干部增强发展数字经济本领,推动数字经济更好服务和融入新发展格局。要想在推动发展数字经济过程中形成看家本领,就需要把坚持问题导向和深刻把握七种思维的根本前提、时代指向、基本蕴涵紧密结合起来,把立场观点方法转化为干事创业、攻坚克难的“桥”与“船”,提升指导和参与数字经济实践的原则性、系统性、预见性和创造性,增强分析研究解决数字经济新情况、新问题的能力。本书从七种思维的内涵与应用的角度,理论与实践相结合,用七种思维来分析数字经济发展问题,对广大党员干部学会使用七种思维,推进数字经济治理,具有一定的价值。 -
大数据时代企业财务会计实践探索易国承本书以大数据时代为背景,阐述了新时代和新技术下财务会计面对的挑战,包括大量数据、时效性、数据安全等,提出财务会计人员须具备更多的素质,以适应改变。本书从六个方面详细分析了基于大数据技术的财务会计转型的必要性,探讨了大数据背景下财务会计由传统的单一工作向综合性工作转型的有效策略,为推进企业财务会计变革提供了参考。 -
数字经济时代互联网发展对城市全要素生产率的影响王钺数字经济的快速发展正在重塑城市现代化的实现路径,为城市全要素生产率增长提供了新的动能和优势。首先,数字经济时代的互联网发展有利于推动效率变革,利用完全信息优势提高社会中生产资料的配置效率,为实现以全要素生产率提升为路径的城市现代化模式提供了可能。其次,作为技术进步的一种形式,互联网的不断发展能够不断释放创新能量,为城市中的产业生产活动提供数字化支撑,加速新旧动能转换。再次,信息通信技术可以助力实现城市治理设施之间的互联互通,构建起城市治理全景“一张图”,提升城市智慧治理的效率。因此,推进中国城市现代化、提升城市全要素生产率要把握数字经济快速发展的趋势,大胆探索数字经济对中国式城市现代化的拓展和延伸,从而更好地发挥数字经济的推动作用。
