书籍详情

智能优化算法及其应用

智能优化算法及其应用

作者:王凌著

出版社:施普林格出版社

出版时间:2001-10-01

ISBN:9787302044994

定价:¥22.00

购买这本书可以去
内容简介
  优化技术是一种以数学为基础,用于求解各种工程问题优化解的应用技术。本书系统地叙述模拟退火算法、遗传算法、禁忌搜索、神经网络优化算法、混饨优化、混合优化策略等智能优化算法的基本理论和实现技术以及最新进展和应用,并从结构上对算法进行统一描述,着重强调混合策略的开发与应用。本书可作为与优化技术相关专业的本科生或研究生的教材,也可供研究人员以及工程技术人员参考。
作者简介
暂缺《智能优化算法及其应用》作者简介
目录
第1章 绪论
1.1 最优化问题及其分类
1.1.1 函数优化问题
1.1.2 组合优化问题
1.2 优化算法及其分类
1.3 邻域函数与局部搜索
1.4 计算复杂性与NP完全问题
1.4.1 计算复杂性的基本概念
1.4.2 P,NP,NP-C和NP-hard
第2章 模拟退火算法
2.1 模拟退火算法
2.1.1 物理退火过程和Metropolis准则
2.1.2 组合优化与物理退火的相似性
2.1.3 模拟退火算法的基本思想和步骤
2.2 模拟退火算法的马氏链描述
2.3 模拟退火算法的收敛性
2.3.1 时齐算法的收敛性
2.3.2 非时齐算法的收敛性
2.3.3 SA算法渐进性能的逼近
2.4 模拟退火算法关键参数和操作的设计
2.5 模拟退火算法的改进
2.6 并行模拟退火算法
2.7 算法实现与应用
2.7.1 组合优化问题的求解
2.7.2 函数优化问题的求解
第3章 遗传算法
3.1 遗传算法的基本流程
3.2 模式定理和隐含并行性
3.3 遗传算法的马氏链描述及其收敛性
3.3.1 预备知识
3.3.2 标准遗传算法的马氏链描述
3.3.3 标准遗传算法的收敛性
3.4 一般可测状态空间上遗传算法的收敛性
3.4.1 问题描述
3.4.2 算法及其马氏链描述
3.4.3 收敛性分析和收敛速度估计
3.5 算法关键参数与操作的设计
3.6 遗传算法的改进
3.7 免疫遗传算法
3.7.1 引言
3.7.2 免疫遗传算法及其收敛性
3.7.3 免疫算子的机理与构造
3.7.4 TSP问题的免疫遗传算法
3.8 并行遗传算法
3.9 算法实现与应用
第4章 禁忌搜索算法
4.1 禁忌搜索
4.1.1 引言
4.1.2 禁忌搜索示例
4.1.3 禁忌搜索算法流程
4.2 禁忌搜索的收敛性
4.3 禁忌搜索的关键参数和操作
4.4 并行禁忌搜索算法
4.5 禁忌搜索的实现与应用
4.5.1 基于禁忌搜索的组合优化
4.5.2 基于禁忌搜索的函数优化
第5章 神经网络与神经网络优化算法
5.1 神经网络简介
5.1.1 神经网络发展回顾
5.1.2 神经网络的模型
5.2 基于Hopfield反馈网络的优化策略
5.2.1 基于Hopfield模型优化的一般流程
5.2.2 基于Hopfield模型优化的缺陷
5.2.3 基于Hopfield模型优化的改进研究
5.3 动态反馈神经网络的稳定性研究
5.3.1 动态反馈网络的稳定性分析
5.3.1.1 离散对称动态反馈网络的渐近稳定性分析
5.3.1.2 非对称动态反馈网络的全局渐近稳定性分析
5.3.1.3 时延动态反馈网络的全局渐近稳定性分析
5.3.2 动态反馈神经网络的收敛域估计
5.4 基于混饨动态的优化研究概述
5.4.1 基于混饨神经网络的组合优化概述
5.4.2 基于混饨序列的函数优化研究概述
5.4.3 混饨优化的发展性研究
5.5 一类基于混饨神经网络的优化策略
5.5.1 ACNN模型的描述
5.5.2 ACNN模型的优化机制
5.5.3 计算机仿真研究与分析
5.5.4 模型参数对算法性能影响的几点结论
第6章 广义邻域搜索算法及其统一结构
6.1 广义邻域搜索算法
6.2 广义邻域搜索算法的要素
6.3 广义邻域搜索算法的统一结构
6.4 优化算法的性能评价指标
6.5 广义邻域搜索算法研究进展
6.5.1 理论研究概述
6.5.2 应用研究概述
6.5.3 发展性研究
第7章 混合优化策略
7.1 引言
7.2 基于统一结构设计混合优化策略的关键问题
7.3 一类GASA混合优化策略
7.3.1 GASA混合优化策略的构造出发点
7.3.2 GASA混合优化策略的流程和特点
7.3.3 GASA混合优化策略的马氏链描述
7.3.4 GASA混合优化策略的收敛性
7.3.5 GASA混合优化策略的效率定性分析
第8章 混合优化策略的应用
8.1 基于模拟退火-单纯形算法的函数优化
8.1.1 单纯形算法简介
8.1.2 SMSA混合优化策略
8.1.3 算法操作与参数设计
8.1.4 数值仿真与分析
8.2 基于混合策略的控制器参数整定和模型参数估计研究
8.2.1 引言
8.2.2 模型参数估计和PID参数整定
8.2.3 混合策略的操作与参数设计
8.2.4 数值仿真与分析
8.3 基于混合策略的TSP优化研究
8.3.1 TSP的混合优化策略设计
8.3.2 基于典型算例的仿真研究
8.3.3 对TSP的进一步讨论
8.4 基于混合策略的加工调度研究
8.4.1 基于混合策略的Job-shop优化研究
8 4.1.1 引言
8.4.1.2 JSP的析取图描述和编码
8.4.1.3 JSP的混合优化策略设计
8.4.1.4 基于典型算例的仿真研究
8.4.2 基于混合策略的置换Flow-shop优化研究
8.4.2.1 混合优化策略
8.4.2.2 算法操作与参数设计
8.4.2.3 数值仿真与分析
8.4.3 基于混合策略的一类批量可变流水线调度问题的优化研究
8.4.3.1 问题描述及其性质
8.4.3.2 混合优化策略的设计
8.4.3.3 仿真结果和分析
8.5 基于混合策略的神经网络仅值学习研究
8.5.1 BPSA混合学习策略
8.5.2 GASA混合学习策略
8.5.3 GATS混合学习策略
8.5.4 编码和优化操作设计
8.5.5 仿真结果与分析
8.6 基于混合策略的神经网络结构学习研究
8.6.1 RBF网络简介
8.6.2 RBF网络结构优化的编码和操作设计
8.6.3 RBF网络结构的混合优化策略
8.6.4 计算机仿真与分析
8.7 基于混合策略的光学仪器设计研究
8.7.1 引言
8.7.2 模型设计
8.7.3 仿真研究和设计结果
附录 Benchmark问题
A:TSP Benchmark问题
B:置换Flow-shop Benchmark问题
C:Job-shop Benchmark问题
参考文献


猜您喜欢

读书导航