拨换截田〔一十九问〕

拨换截田〔一十九问〕

今有半种金田一段,长五十步,斜阔一十步。与邻对拨圭田一段。只云并圭田长、阔、较为正实,一十五为益方,一为正隅,平方开之,少如较四步,问圭田长、阔各几何?

答曰:长二十五步,阔一十六步。

术曰:立天元一为半种金田之中股,如积求之。得二千四百为正实,一百为从方,五十为益隅,平方开之,得中股八步。又立天元一为较,如积求之。得四千一百七十六为正实,三千三百四十四为益方,六百三十五为从上廉,四十四为益下廉,一为正隅,三乘方开之,得较,合问。

今有四不等田一段,东长二十六步,西长二十五步,南阔一十四步,北阔一十七步。与邻对换直田一段。只云并直田长、较为益实,五为从方,一为从隅,平方开之,所得不及平七步。问长、平各几何?

答曰:长三十一步,平一十二步。

术曰:立天元一为四不等之元方面,如积求之。得四百八十为正实,二十八为从方,二为益隅,平方开之,得二十四步。又立天元一为平,如积求之。得七百四十四为益实,一十四为从方,八为益廉,一为正隅,立方开之,得平,合问。

今有圭田一段不云圭阔,只云长五十步,直银五十四两。今从尖截阔一十二步,直银六两。问截长及圭阔各几何?

答曰:截长一十六步太半步,阔三十六步。

术曰:立天元一为截长,如积求之。得二千五百为正实,九为益隅,平方开之得截长。不尽,按之分术求之,合问。

今有梯田一段,小阔一十二步,大阔二十步,直钱三十二贯文。今从大头截长四步,直钱九贯五百文。问截阔及元长各几何?

答曰:截阔一十八步,元长一十六步。

术曰:立天元一为截阔,如积求之。得三百二十四为正实,一为益隅,平方开之得截阔,合问。

今有梯田一段,小阔二十五步,大阔六十五步,正长一百六十步今从小阔截拨七亩一百一十二步,问截长、阔各几何?

答曰:截长五十六步,阔三十九步。

术曰:立天元一为截长,如积求之。得一万四千三百三十六为益实,二百为从方,一为从隅,平方开之,得截长,合问。

今有梯田一段,大阔四十二步,小阔一十八步,正长一百二十步。今从大阔截地十亩一百八十七步二分步之一,问截长、阔各几何?

答曰:截长七十五步,截阔二十七步。

术曰:立天元一为截长,如积求之。得二万五千八百七十五为益实,四百二十为从方,一为益隅,平方开之,得截长,合问。

今有圭田一段,长一百三十六步,阔六十八步。今从尖截地二亩四分,问截长、阔各几何?

答曰:截长四十八步,截阔二十四步。

术曰:立天元一为截长,如积求之。得二千三百四为益实,一为正隅,平方开之,得截长,合问。

今有圭田一段,长一百二十步,阔四十八步。今欲从阔截卖七亩七十五步,问截长、阔各几何?

答曰:截长四十五步,截阔三十步。

术曰:立天元一为截长,如积求之。得一千七百五十五为益实,四十八为从方,二分为益隅,平方开之,得截长,合问。

今有圭田一段,长一百七十四步,阔一百一十六步。今从东竖截句股积三百三十七步半,问截句、股各几何?

答曰:截句十五步,截股四十五步。

术曰:立天元一为截句,如积求之。得二百二十五为益实,一为正隅,平方开之,得截句,合问。

今有句股田一段,股长八十六步,句阔二十五步八分。今从尖截卖地一百五十三步六分,问截长、阔各几何?

答曰:截长三十二步,阔九步六分。

术曰:立天元一为截长,如积求之。得一千二十四为益实,一为正隅,平方开之,得截长,合问。

今有句股田一段,句阔五十七步,股长九十五步。今从句横截地八亩三十七步半,问截长、阔各几何?

答曰:截长四十五步,截阔三十步。

术曰:立天元一为截长,如积求之。得六千五百二十五为正实,一百九十为益方,一为正隅,平方开之,得截长,合问。

今有句股田一段,句阔六十步,股长一百五十步。令甲、乙、丙三人分之,甲截积二千九十步,乙截积一千八百五步,丙截积六百五步。从南横截一句股与乙,从东竖截一句股与丙,外剩直田一段与甲。问三人各截长、阔各几何?

答曰:甲截长五十五步,截阔三十八步;乙截股九十五步,截句三十八步;丙截股五十五步,截句二十二步。

术曰:立天元一为乙截句,如积求之。得一千四百四十四为益实,一为正隅,平方开之,得乙截句〔即甲截阔〕。又立天元一为丙截股,如积求之。得六百五为益实,二分为从隅,平方开之得丙截股〔即甲截长〕,合问。

今有梯田一段,正长二百一十步,小阔五十步,大阔九十二步。令甲、乙、丙、丁分之。甲截积六千三百五十二步二分步之一,乙截积五千三十七步二分步之一,丙截积二千一百六十二步二分步之一,丁截积一千三百五十七步二分步之一。从上先截给甲,次与乙、丙、丁,问各截长、阔几何?

答曰:甲截长一百五步,截阔七十一步;乙截长六十五步,截阔八十四步;丙截长二十五步,截阔八十九步;丁截长一十五步,截阔九十二步。

术曰:立天元一为甲截长,如积求之。得六万三千五百二十五为益实,五百为从方,一为从隅,平方开之,得甲截长。又立天元一为乙截长,如积求之。得一万七十五为益实,一百四十二为从方,二分为从隅,平方开之,得乙截长。又立天元一为丙截长,如积求之。得四千三百二十五为益实,一百六十八为从方,二分为从隅,平方开之,得丙截长。又立天元一为丁截长,如积求之。得二千七百一十五为益实,一百七十八为从方,二分为从隅,平方开之,得丁截长,合问。

今有弧田一段,弦长七十步,矢阔二十五步。今从弧背复截弧矢积二十六步,问截弦、矢各几何?

答曰:截弦二十四步,截矢二步。

术曰:先求得圆径七十四步。立天元一为截矢,如积求之。得二千七百四为益实,一百四为从上廉,二百九十六为从下廉,五为益隅,三乘方开之,得截矢二步。自之,以减倍积,余以矢除之,即弦,合问。

今有圆田一段,周二百六十七步。今从边截一弧,计积一千三百一十二步中半步,问截弦、矢各几何?

答曰:截矢二十五步,截弦八十步。

术曰:立天元一为截矢,如积求之。得六百八十九万六百二十五为正实,五千二百五十为益上廉,三百五十六为益下廉,五为正隅,三乘方开之,得截矢,合问。

今有圆田一段,径九十步。甲、乙共截一弧,其甲从边复截一弧,以次给乙。甲截积二百八十三步二分步之一,乙截积五百二十六步二分步之一。问甲、乙各截弦、矢几何?

答曰:甲截矢九步,截弦五十四步;乙截矢九步,截弦七十二步。

术曰:立天元一为甲截矢,如积求之。得三十二万一千四百八十九为正实,一千一百三十四为益上廉,三百六十为益下廉,五为正隅,三乘方开之,得甲截矢九步。列甲积,通分内子,内减矢幂。余以矢除之,即甲截弦。又立天元一为共截矢,如积求之。得二百六十二万四千四百为益实,三千二百四十为从上廉,三百六十为从二廉,五为益隅,三乘方开之,得共截矢一十八步。内减甲截矢,余即乙截矢。又共矢自之,以减甲、乙并积通分内子之数,余以共矢而一,即乙截弦,合问。

今有圆田一段,甲东截一弧,计积三十一步中半步。乙西截一弧,计积九十步。只云甲截矢少如乙截矢三步,问二弧各截弦、矢几何?

答曰:甲截矢三步,截弦一十八步;乙截矢六步,截弦二十四步。

术曰:立天元一为甲截矢,如积求之。得三万五千七百二十一为正实,三万五千七百二十一为从方,一万七百七十三为从上廉,九千六百六十六为益二廉,二百七为从三廉,三十三为从下廉,五为益隅,五乘方开之,得甲截矢。又立天元一为乙截矢,如积求之。得六十为益实,一十六为从方,一为益隅,平方开之,得乙截矢,合问。

今有大、小圆田各一段,共地六亩六十四分亩之六十一。只云小圆径如大圆径八分之五。今于二圆从边各截一弧,共积二百二十二步半,其小弧矢不及大弧矢三步。问二弧矢各几何?

答曰:截大弧矢八步,弦三十二步;截小弧矢五步,弦二十步。

术曰:立天元一为大圆径,如积求之。得一千六百为益实,一为从隅,平方开之,得大圆径四十步。五之,八而一,即小圆径。又立天元一为截小矢,如积求之。得四亿三千二百九十一万五千一百二十五为正实,四千二百四十三万八百为益方,一千二百六十万一千四百五十为益上廉,二十二万六千一百五十四为益二廉,一十八万七千五百一十一为从三廉,五千七百二为从四廉,七百五十三为益五廉,一十四为益下廉,一为正隅,七乘方开之,得截小矢五步。倍之,以减小圆径,余自之,以减小圆径幂,余为实,开平方,即小弧弦,合问。

今有圆田一段,内复有圆池占之〔二圆皆依古法〕,余地八亩强半亩。只云环之实径自乘,多于通径二十步。今欲从西竖截车辋积五百三十八步,问截池弦、池矢及内、外周,两头博径各几何?

答曰:截池矢六步,池弦三十六步;内周三十七步二分,外周七十步四分;博径一十四步,实径一十步。

术曰:立天元一为环之实径,如积求之。得七百为益实,二十为益方,一为益廉,一为从隅,立方开之,得实径。求得通径八十步,池径六十步。又二之辋积,如实径而一,得一百七步六分,为车辋内外周相和之数。

又立天元一为截池矢,如积求之。得一兆四千九十九万七千九百一十七亿五千五百五十九万一千九百三十六为正实,二千五百五十八万三千亿三千九百八十三万八千七百二十为益方,一十八万七千八百二十九亿八千四百六十三万一十六为从上廉,二万七千六百五十四亿五千三百九十万九千七百六十为从二廉,一百二十四亿五千一百八十六万八千六十四为益三廉,九亿二千二百七十四万三千三百六十为益四廉,四百九十五万五千六百六十四为益五廉,八万二千三百二十为从下廉,二千四百一为从隅,七乘方开之,得截池矢六步。倍之,以减池径,余自乘,复减池径幂,余为实,平方开之,得截池弦。又池矢自乘,倍之,以池径除之,得数为池周弦差,加池弦,得辋内周。以减内、外周相和之数,余即外周。又池矢加实径为通矢,自乘,倍之,以通径除之,所得为辋外周弦差。以减外周,余即通弦。内减池弦,余半之,即博径,合问。

〔图略〕

读书导航