句股测望〔八问〕

句股测望〔八问〕

今有直邑,不知大小,各中开门。只云南门外二百四十步有塔,人出西门行一百八十步见塔。复抹邑西南隅行一里二百四十步,恰至塔所。问邑长、阔各几何?

答曰:长一里一百二十步,阔一里。

术曰:立天元一为邑半长,如积求之。得一十八亿六千六百二十四万为正实,一千五百五十五万二千为从方,二十七万为益上廉,四百八十为从下廉,一为正隅,三乘方开之,得二百四十步。倍之,即长。又立天元一为邑半阔,如积求之。得一十八亿六千六百二十四万为正实,二千七十三万六千为从方,二十七万为益上廉,三百六十为从下廉,一为正隅,三乘方开之,得一百八十步。倍之即阔,合问。

今有圆城,不知大小,各中开门。甲、乙俱从城心而出,甲出南门一十五步而立,乙出东门四十步见甲。问城周几何?

答曰:一里。

术曰:立天元一为城之半圆径,如积求之。得三十六万为正实,六万六千为从方,二千四百为从上廉,一为益隅,三乘方开之,得半圆径六十步。倍而三之,即城周也。合问。

今有方城,不知大小,各中开门。北门外九十步有邮亭一所,人于城中出西门外,行一百六十步,却遥望参城隅见亭。问城方几何?

答曰:二百四十步。

术曰:立天元一为城之半方面,如积求之。得一万四千四百为益实,一为正隅,平方开之,得一百二十步。倍之,合问。

今有圆城,不知高远。立两表各高一丈二尺,表间相去八十尺,令前表与后表参相直。于前表退行六十尺,人目薄地遥望,乳头与前表末参合;又从后表退行一百尺,人目薄地遥望,乳头与后表末参合。问城高及前表去城各几何?

答曰:城高三丈六尺,表去城一百二十尺。

术曰:立天元一为城高,如积求之。得一千四百四十为正实,四十为益方,上实下法而一,得城高。求表去城者,以前表退行乘表间为实,两表退行差为法,实如法而一,合问。

今有方城,上有戍楼不知高远。立两表齐高一丈五尺,表间相去八十步,令前表与后表参相直。人目高四尺,于前表退行三十步,遥望楼岑,与前表末参合。复望楼足,入表五尺六寸。又从后表退行五十步,遥望楼岑,与后表末参合。问城、楼各高几何?

答曰:楼高二丈八尺,城高三丈一尺。

术曰:立天元一为楼高,如积求之。得二千八百为益实,一百为从方,开无隅平方而一,得楼高。求城高者,置表高减人目及入表,余乘表间为实,以两表退行相多为法,实如法而一,合问。

今有方城,不知大小。立两表东西相去四十三步二分,齐人目以索连之。令东表与城东南隅及东北隅参相直,于东表退行一十四步八分,遥望城西北隅入索东端一十步。又却北行去表六十四步八分,遥望城西北隅适与西表末相参合。问城方去表、去城各几何?

答曰:城方六里三百四十步,去表一十里八十五步〔五分步之一〕。

术曰:立天元一为城方,如积求之。得五千为正实,二为益方,上实下法而一,得城方。求表去城者,入索乘北行去表,以两表相去除之,得为景差。内减东去表,余以为法。又北行去表内减景差,余乘东表退行为实。实如法而一,即表去城之远,合问。

今有营居山顶,岩底有泉,欲汲而不知其深。偃矩山上,令句高四尺,从句端望泉,入下股六尺。又设重矩于上,其矩间相去一丈六尺,更从句端望泉,入上股五尺六寸。问岩深几何?

答曰:岩深二十二丈。

术曰:立天元一为岩深,如积求之。得二十二尺为正实,一寸为从方,上实下法而一即岩深,合问。

今有登山临邑,不知门高。偃矩山上,令句高三尺。斜望门额入下股四尺八寸,复望门阃入下股二尺八寸八分。又复立重矩于上,其间相去五尺。更从句端斜望门额,入上股三尺六寸,又望门阃,入上股二尺四寸。问城门高几何?

答曰:门高一丈。

术曰:立天元一为门高,如积求之。得五十寸为正实,五分为益方,开无隅平方而一得门高,合问。

读书导航