如意混和〔二问〕

如意混和〔二问〕

今有金球、银球、玉球各一只,共积三十二寸五万五千二百六十四分寸之一万一千三十一,计重一秤一十斤一十一两一十八铢一万三千八百一十六分铢之一万三千六百一十一。只云金圆周多如银圆周一寸,银圆周却多玉圆周一寸。金圆周依古法,银圆周依徽术,玉圆周从密率。金方一寸,重一十五两一十八铢;银方一寸,重一十二两六铢〔金银方寸之重皆按张邱建术〕;玉方一寸,重七两〔按《黄帝九章》法〕。问三圆周及积寸、重各几何?

答曰:金圆周九寸〔积一十五寸一十六分寸之三,重一十四斤一十五两四铢八分铢之七〕,银圆周八寸〔积一十寸一百五十七分寸之三十,重七斤一十二两二十铢一百五十七分铢之二十八〕,玉圆周七寸〔积六寸三百五十二分寸之二百八十九,重二斤一十五两一十七铢四十四分铢之四十一〕。

术曰:立天元一为金圆周,如积求之。得五百三十六万八千一百一十三为益实,四万九千四百六十四为从方,二万九千六百八十二为益廉,一万五十一为从隅,立方开之得金圆周。又立天元一为银圆周,如积求之。得五百三十三万八千二百八十为益实,二万二百五十三为从方,四百七十一为从廉,一万五十一为从隅,立方开之得银圆周。又立天元一为玉圆周,如积求之。得五百三十万七千五百五为益实,五万一千三百四十八为从方,三万六百二十四为从廉,一万五十一为从隅,立方开之得玉圆周,合问。

今有三角垛,四角垛,果子、方箭、圆箭、平圆径、立圆径、平方面、立方面、茭草垛各一,所共积一万五百八十九算。只云立方面不及三角底面一个,如平方面五分之二;茭草底子多三角底面一束,却与立圆径等;圆箭外周如四角底面太半,如方箭外周中半;三角、四角底面相和得三十三个;平圆径多于四角底面七分之四。问九事各几何?

答曰:三角底子一十五个,四角底子一十八个,方箭外周二十四只,圆箭外周一十二只,平圆径四十二尺,立圆径一十六尺,平方面三十五尺,立方面一十四尺,茭草底子一十六束。

术曰:立天元一为三角底子,如积求之。得二百八十四万六千八百三十五为正实,六十万八千四百三十九为益方,一万八千八百六十五为从廉,六百三为从隅,立方开之得三角底子。又立天元一为四角底子,如积求之。得二千四百九十八万二千三百四十四为正实,二百六十万六千六百五十二为益方,七万八千五百六十二为从廉,六百三为益隅,立方开之得四角底子。又立天元一为方箭外周,如积求之。得八千八百八十二万六千一百一十二为正实,六百九十五万一千七十二为益方,一十五万七千一百二十四为从廉,九百单四半为益隅,立方开之得方箭外周。又立天元一为圆箭外周,如积求之。得二千二百二十万六千五百二十八为正实,三百四十七万五千五百三十六为益方,一十五万七千一百二十四为从廉,一千八百九为益隅,立方开之得圆箭外周。又立天元一为平圆径,如积求之。得九亿五千二百一十万四千八百八十八为正实,四千二百五十七万五千三百一十六为益方,五十四万九千九百三十四为从廉,一千八百九为益隅,立方开之得平圆径。又立天元一为立圆径,如积求之。得三百四十七万三千五百三十六为正实,六十四万四千三百六十为益方,一万七千五十六为从廉,六百三为从隅,立方开之得立圆径。又立天元一为平方面,如积求之。得七百五万五千八百二十五为正实,七十一万一千一百二十五为益方,一万三百三十七为从廉,一百二十步六分为从隅,立方开之得平方面。又立天元一为立方面,如积求之。得二百二十五万七千八百六十四为正实,五十六万八千九百为益方,二万六百七十四为从廉,六百三为从隅,立方开之得立方面。又立天元一为茭草底子,如积求之。得三百四十七万三千五百三十六为正实,六十四万四千三百六十为益方,一万七千五十六为从廉,六百三为从隅,立方开之得茭草底子,合问。

读书导航